Breaking News
December 12, 2018 - Sprayable gel could help prevent recurrences of cancer after surgery
December 12, 2018 - How do patients want to discuss symptoms with clinicians?
December 12, 2018 - Zinc chelation may be able to deliver drug to insulin-producing cells
December 12, 2018 - Brigham researchers develop automated, low-cost tool to predict a woman’s ovulation
December 12, 2018 - Some people with Type 2 diabetes may be testing their blood sugar more often than needed
December 12, 2018 - Slow-growing type of glioma may be vulnerable to immunotherapy, suggests study
December 12, 2018 - Study provides new information regarding microRNA function in cellular homeostasis of zebrafish
December 12, 2018 - Study provides new understanding of mysterious ‘hereditary swelling’
December 12, 2018 - Researchers shed new light on how to combat Shiga and ricin toxins
December 12, 2018 - Pregnant Women Commonly Refuse Vaccines
December 12, 2018 - Drug treatment could offer new hope for some patients with brain bleeding
December 12, 2018 - Health care financial burden of animal-related injuries is growing, study says
December 12, 2018 - Macrophage cells could help repair the heart following a heart attack, study finds
December 12, 2018 - Researchers develop new system for efficiently producing human norovirus
December 12, 2018 - New artificial intelligence-based system to differentiate between different types of cancer cells
December 11, 2018 - Brazilian professors propose guidelines for therapeutic use of melatonin
December 11, 2018 - Healthy Lifestyle Lowers Odds of Breast Cancer’s Return
December 11, 2018 - New research identifies two genes linked to serious congenital heart condition
December 11, 2018 - NIH Director talks science, STEM careers with preteens
December 11, 2018 - Disabling a Cellular Antivirus System Could Improve Gene Therapy
December 11, 2018 - New tool swiftly provides accurate measure of patients’ cognitive difficulties
December 11, 2018 - NICE releases new guidelines for diagnosis and management of COPD
December 11, 2018 - Without Obamacare penalty, think it’ll be nice to drop your plan? Better think twice
December 11, 2018 - Researchers capture high-resolution X-ray and NMR image of key immune regulator
December 11, 2018 - Natural flavonoid is effective at treating leishmanisis infections, study shows
December 11, 2018 - Avoidant grievers unconsciously monitor and block mind-wandering contents, study shows
December 11, 2018 - Study identifies how hantaviruses infect lung cells
December 11, 2018 - Improving PTSD care through genetics
December 11, 2018 - Dermatology providers show interest in recommending cannabinoids to patients
December 11, 2018 - Researchers to study effects of electroconvulsive therapy on Alzheimer’s patients with aggression
December 11, 2018 - Four dried fruits have lower glycemic index than starchy foods, study finds
December 11, 2018 - Optimization of drug dose sizes can reduce pharmaceutical wastage
December 11, 2018 - Ultrarestrictive opioid prescribing strategy linked with reduction in number of pills dispensed
December 11, 2018 - PET scans to optimize tuberculosis meningitis treatments and personalize care, study finds
December 11, 2018 - Researchers aim to identify and target high blood pressure indicators
December 11, 2018 - Researchers identify immune cell subset that may drive chronic inflammation
December 11, 2018 - Ezogabine treatment reduces motor neuron excitability in ALS patients, study shows
December 11, 2018 - One implant, two prices. It depends on who’s paying.
December 11, 2018 - Standardizing feeding practices improves growth trends for micro-preemies
December 11, 2018 - COPD Tied to Obesity in Male, Female Never-Smokers
December 11, 2018 - Flossing: Information for Caregivers
December 11, 2018 - Does breastfeeding hormone protect against type 2 diabetes?
December 11, 2018 - Educating future doctors to prescribe physical activity for their patients
December 11, 2018 - Krystal 2000 microplate design improves fluorescence and luminescence measurement
December 11, 2018 - FDA clears mobile medical app to help increase retention in recovery program for opioid use disorder
December 11, 2018 - Overcoming Challenges in High-Speed Centrifugation Experiments
December 11, 2018 - Study shows link between neighborhoods’ socioeconomic status and dietary choices
December 11, 2018 - Lower BMI before obesity surgery predicts greater post-operative weight loss, study finds
December 11, 2018 - Obesity May Be Driving Rise in Uterine Cancers
December 11, 2018 - Antioxidants may prevent cognitive impairment in diabetes
December 11, 2018 - Study discovers link between meditation and how individuals respond to feedback
December 11, 2018 - Researchers identify potential diagnostic tool for Alzheimer’s disease
December 11, 2018 - Oral cancer prognostic signature identified
December 11, 2018 - How Can I Find Out What Caused My Miscarriage?
December 11, 2018 - Novel personalized medicine tool for assessing inherited colorectal cancer syndrome risk developed
December 11, 2018 - Study uncovers 11 new genes associated with epilepsy
December 11, 2018 - Filling research gaps could help develop more disability-inclusive workplaces
December 11, 2018 - Cartilage tissue engineering brings good news for patients with cartilage defects
December 11, 2018 - Novel 3D printing workflow helps predict leaky heart valves
December 11, 2018 - Imagination can help overcome fear and anxiety-related disorders, shows study
December 11, 2018 - Are caries linked to political regime?
December 11, 2018 - Leader in Diabetes Clinical Trials Wins Naomi Berrie Award
December 11, 2018 - Scientists discover cellular mechanism that triggers pneumonia in humans
December 11, 2018 - Increasing mental health problems related to drug use in over 55’s
December 11, 2018 - High-intensity interval exercise could help combat cognitive dysfunction in obese people
December 11, 2018 - Annual flu shot can save lives of heart failure patients
December 11, 2018 - Researchers compare health outcomes for VA and non-VA hospitals
December 11, 2018 - Recommendations Developed for Psoriatic Arthritis Treatment
December 11, 2018 - Genetic analysis links obesity with diabetes, coronary artery disease
December 11, 2018 - Study shows that having genetic information can affect how the body responds
December 11, 2018 - UNAIDS Report: 9 Million Are Likely HIV Positive And Don't Know It
December 11, 2018 - Lund University researchers succeed in obtaining dendritic cells by direct reprogramming
December 11, 2018 - Breast tumors recruit bone marrow cells to boost their growth, study reveals
December 11, 2018 - Updated breast cancer screening guideline highlights importance of shared decision-making
December 11, 2018 - EHR-related stress associated with physician burnout
December 11, 2018 - AHA: 12-Year-Old Heart Defect Survivor Inspires NFL Player’s Foundation
December 11, 2018 - Breast cancer patients who take heart drug with trastuzumab have less heart damage
December 11, 2018 - Providing aid to those humans – and animals – affected by the California fires
December 11, 2018 - Even without proof, CBD is finding a niche as a cure-all
December 11, 2018 - Drawing leads to better memory than writing
Study uncovers new chemical reaction key to cataract formation

Study uncovers new chemical reaction key to cataract formation

image_pdfDownload PDFimage_print

Researchers working to understand the biochemistry of cataract formation have made a surprising finding: A protein that was long believed to be inert actually has an important chemical function that protects the lens of the eye from cataract formation.

The lens is made up of cells packed with structural proteins called crystallins. Crystallins within each lens cell form a protein-dense gel, and the gel’s optical properties — like its transparency and the way it refracts light — help focus light onto the retina.

But when crystallin proteins clump together, they are no longer so transparent. If enough of the proteins go from their usual water-soluble, densely packed organization to clumpy aggregates, they begin to scatter incoming light, forming cloudy deposits known as cataracts.

According to Harvard postdoctoral fellow Eugene Serebryany, lead author on a recent study in the Journal of Biological Chemistry, for a long time researchers believed that crystallin proteins were chemically inert. That is, except for aggregating as an individual ages, the proteins were not believed to interact much with fellow proteins. Serebryany said, “This was the model: (crystallin’s) real function is to remain monomeric and transparent and avoid aggregating for as long as possible.”

Back when he was a graduate student at MIT, Serebryany used a mutant form of the lens protein gamma-crystallin to mimic UV damage to the protein. While studying how that mutation leads crystallin to aggregate into clumps, Serebryany found something surprising: The mutant was more likely to aggregate if wild-type, or undamaged, protein was also present.

Harvard professor Eugene Shakhnovich, who collaborated with Serebryany and his graduate adviser, Jonathan King, on the earlier studies, described the finding as “a fairly striking phenomenon” and explained: “If you had these damaged proteins in a test tube, they would not aggregate for a while. If you had the wild-type protein, it would not aggregate forever. But then, when you mix the two, you see rapid and precipitous aggregation.”

In other words, the healthy version of a protein everyone had thought was inert was somehow causing a slightly damaged version to get much worse — and fast.

When Serebryany graduated, Shakhnovich hired him to continue working to understand how a supposedly inactive protein could cause this effect. Serebryany said, “The first thing I had to do was basically try to get the experiments from my Ph.D. lab to work in this (new) lab.”

“They’re just two stops apart on the subway!” Shakhnovich joked.

But, for some reason, Serebryany had trouble replicating the results. “It’s a different place, it’s a different set of instruments, a slightly different set of procedures. You see where this is going,” he said. “All of a sudden, experiments that were highly reproducible before were giving a lot of variability.”

Indeed, in the Harvard lab sometimes the wild-type crystallin caused mutant crystallin to aggregate, and sometimes it didn’t. The scientists were mystified.

Serebryany said, “Obviously, if there is suddenly variability, there is a hidden variable that we didn’t see before.” He set up a series of experiments trying to pinpoint that variable.

A close comparison of the molecular weights of the wild-type protein that caused the mutant to clump and the protein that didn’t revealed a difference equivalent to the weight of two hydrogen atoms. This gave the researchers a hint that the redox state – whether two sulfur atoms within a protein molecule were bound to one another instead of to hydrogen atoms — might make a difference.

“By carrying out isotopically resolved mass spectrometry experiments, we got more than we bargained for,” Serebryany explained. “Not only did the aggregation-prone mutant acquire one internal disulfide bond per molecule during the aggregation reaction, but the aggregation-promoting wild-type protein lost its disulfide at the same time.”

By mutating the sulfur-containing cysteine amino acid residues one by one to non-sulfur-containing residues, Serebryany found that two cysteine amino acids close together on the surface of gamma-d-crystallin acted as a kind of switch. When the two bound, making a structure called a disulfide bond, crystallin seemed to be able to push damaged fellow molecules toward aggregation. When the two cysteines were not bound, each instead took on a hydrogen atom, explaining the protein’s tiny change in mass. Under that condition, wild-type crystallin was inert.

But how could one bond between amino acids on the surface of this protein make it drive other proteins to aggregate?

Using biophysical and biochemical techniques, the team found that although the disulfide bond forms easily, it also introduces strain into the protein’s structure. This made each protein molecule likely to pass along the disulfide bond to a nearby molecule of the protein, receiving two protons in return. In this way the disulfide bond could be constantly passed around among crystallin protein molecules. The authors compared the process to passing a hot potato.

Given a whole population of healthy, undamaged crystallin proteins, this process could go on indefinitely. But if one protein was already a little damaged, the authors showed, it caught the hot potato with a different set of cysteines, which were less able to pass it on. This drove the damaged protein to clump up. The authors’ previous work revealed that mutations mimicking damage caused by UV changed the stability of the protein, making it more floppy, and therefore more likely to acquire the conformation that exposes new cysteines that could catch the hot potato.

This helps us understand cataract formation. According to Shakhnovich, the team is working on peptide treatments that might keep the “hot potato” from reaching damaged proteins. Serebryany hopes such peptides “could actually soak up some of those disulfides and delay the time that it takes to form the more aggregation-prone species.” That could lead to slower cataract formation for patients.

Tagged with:

About author

Related Articles