Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Study reveals why mitochondria are often strangely shaped inside the brain

Study reveals why mitochondria are often strangely shaped inside the brain

Columbia neuroscientists have discovered why mitochondria, tiny power generators that keep our cells healthy, are often strangely shaped inside the brain. Mitochondria, which exist by the thousands in each of our body’s 37 trillion cells, usually look like long interconnected tubes. But inside brain cells called neurons, they adopt two completely different shapes depending on their location within the cell: that same elongated, tubular shape and a substantially smaller, almost spherical shape, that more closely resembles golf balls. In today’s study, researchers have identified the mechanism responsible for these differences in mitochondrial shape — uncovering key insight into the relationship between mitochondrial shape and their function.

This research, published online today in Nature Communications, suggests that these unusually small, squat mitochondria help neurons grow and make proper connections in the developing brain. The work could open up new lines of inquiry into may be at play when these processes go awry in brain disease.

“In most cells in our body, mitochondria take on the standard tubular shape, but inside neurons, mitochondria can adopt that same shape or they can be tiny, almost spherical; the reasons for this difference have remained largely unexplored,” said Franck Polleux, PhD, a principal investigator at Columbia’s Mortimer B. Zuckerman Mind Brain Behavior Institute and the paper’s senior author. “Today, we’ve uncovered an unexpected mechanism that helps maintain the unusually small size of these mitochondria, shedding new light on how maintenance of their size is critical for normal brain-cell growth.”

The unique shape of these mitochondria is ultimately tied to the unique shape of neurons themselves. Unlike other cells in the body that are comprised only of a simple cell body, neurons also have two sets of extensions, branching outward in opposite directions, called dendrites and axons. These extensions are essential. They span out from the neuron like tendrils, linking up to other cells to pass information to each other in the form electrical pulses — forming an information superhighway of microscopic proportions.

To pass these pulses, an axon from one neuron will connect to the dendrite of another neuron. That contact point, called a synapse, acts like an intercellular ‘handshake’ to ensure the right electrical pulses — and therefore the right information — are shared between cells.

To bolster cellular communication, a single axon can form thousands of individual branches, each of which is about one micron in diameter — 50 times smaller than the width of a human hair. In each axon and its branches exist thousands of small mitochondria, which are often localized at synapses.

“These axonal mitochondria are unlike any mitochondria anywhere else in the body — they are even different than those found in other parts of the neuron,” said Dr. Polleux, who is also a professor of neuroscience at Columbia University Irving Medical Center. “This begged the question: Does this small size serve a function?”

Mitochondria are remarkably dynamic. In order to keep their size uniform, they constantly undergo fusion (in which several mitochondria will combine into one) and fission (in which they split apart). In a series of experiments on neurons taken from the brains of mice, the researchers, including co-first author and former Polleux lab member Tommy Lewis, PhD, pinpointed a gene called MFF. When switched on, MFF appears to keep axonal mitochondria decidedly small.

“The gene MFF promotes mitochondrial fission,” said Dr. Polleux. “so, when we shut off MFF, we tilted the balance, increasing fusion events. This caused the normally small axonal mitochondria to increase in length by five-to-ten-fold.”

Surprisingly, this increase in size did not reduce mitochondria’s ability to move up and down the axon. Nor did it change their capacity to act as energy powerhouses, which was wholly unexpected, given that this is thought to be their main role in most cells.

There was one significant difference in these new, longer axonal mitochondria, uncovered by co-first author and former Polleux lab member Seok-Kyu Kwon, PhD: They took in a significantly greater amount of calcium from their surroundings. Calcium is critical for brain activity, including for transmitting between synapses. Mitochondria’s calcium uptake normally allows electrical signals to pass between cells.

But longer mitochondria meant a greater capacity to take up calcium at synapses. This, the researchers observed, disrupted the normal pattern of electrical signals that passed between cells, impairing the neurons’ ability to communicate with their neighbors. This impairment also stunted the axon during development, ultimately causing them to decrease their branching.

“The normally small size of axonal mitochondria seems to keep calcium buffering at just the right level to drive healthy axonal growth and foster cellular connections,” said Dr. Polleux.

Interestingly, these findings also suggest that energy production — the primary job of mitochondria elsewhere in the body — may not be the main duty of axonal mitochondria.

“There may be a far more specialized role for them,” said Dr. Polleux. “And that is something that we are actively deciphering at this very moment.”

For Dr. Polleux, knowing the steps that drive neuronal growth is a critical step toward untangling neurodegenerative disease. Many diseases, including Alzheimer’s, affect mitochondrial structure and function. He hopes the work in his lab can help shed light on why this is the case, and also what steps can be taken to mitigate it.

“Without delving into the inner workings of the brain at this level of detail, would be akin to trying to understand how a car works just by watching it move along a highway,” he added. “You have to open up the car’s hood and take a close look at all its parts.”

Source:

https://zuckermaninstitute.columbia.edu/why-small-size-matters-tiny-mitochondria-stimulate-brain-cell-connections-columbia-study-shows

Tagged with:

About author

Related Articles