Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Innovative inhalation system to treat premature babies with lung diseases

Innovative inhalation system to treat premature babies with lung diseases

Premature babies who are born before their lungs have finished maturing often suffer from a lack of surfactant – a substance necessary for lung development. They are also particularly susceptible to illnesses of the respiratory organ, which have to be treated by means of inhalation. However, the inhalation systems available are not geared to the needs of preterm infants and newborns. Researchers at the Fraunhofer Institute for Toxicology and Experimental Medicine ITEM are working with partners to develop a system that would allow drugs to be administered as aerosols in an efficient and breath-triggered manner. This would shorten therapy duration, thereby easing the strain on little bodies.

Worldwide, around 15 million babies are born prematurely every year – and the trend is growing. Industrialized countries are no exception to this development. According to World Health Organization (WHO) figures, the rate in Germany is 9.2 per 100 newborns. One of the most common complications in premature babies is bronchopulmonary dysplasia, a chronic lung disease caused by the artificial ventilation that the infants often need. Also, because the preterm infants’ immune systems are not fully developed, they have an increased risk of infection. Lung infections are best treated with inhaled drugs. However, there are no inhalation systems that are specially adapted to the needs of premature babies and other newborns, as developing the corresponding technologies is very complicated due to the specific breathing characteristics of the tiny patients. Preterm infants typically have a high respiratory rate of 40 to over 60 breaths per minute and short inhalation periods of 0.25 to 0.4 seconds. On top of this, neonatal lungs have only a small tidal volume, posing extra difficulties for inhalation treatment. For this reason, scientists at the Fraunhofer Institute for Toxicology and Experimental Medicine ITEM in Hannover are working together with partners from industry and research to develop a new inhalation system allowing premature babies to receive an efficient inhalation therapy that is gentle on their lungs.

“Administering drugs to premature babies by means of inhalation is difficult. The current method of continuously delivering aerosols – that is, drugs in the form of particles – into the airflow is inefficient. For one thing, a large portion of the expensive drug gets lost on account of the inhalation/exhalation ratio and thus provides no medical benefit. Moreover, the aerosol is immediately diluted by the airflow traveling through the respirator,” says Dr. Gerhard Pohlmann, head of the Fraunhofer ITEM Division of Translational Biomedical Engineering. The project partners are developing a new breath-triggered method whereby the aerosol is administered directly to the nose only when the premature baby inhales. “For the first time, this opens the door to the highly efficient administration of drugs to preterm infants. This means that the amount of active ingredients can be reduced and therapy durations can be shortened. In addition, precise time control with very short inhalation boli permits the focused treatment of specific lung regions,” says Pohlmann. A similar system would also be fundamentally suitable for adult patients who require daily inhalation therapy. Shortening the administration time can substantially improve their quality of life.

Sensor film for monitoring the respiration of premature babies

The innovative inhalation system combines two technologies: A nasal prong with a miniature aerosol valve that is directly applied to the nose of the preterm infant. With a response time of just a few milliseconds, the aerosol valve allows the active ingredient to be released in a rapid, targeted manner. Opening of the valve is controlled by a sensor film. Laid on the abdominal wall of the premature baby, this flexible matrix uses sensors to detect the movement of the upper abdomen, thereby measuring the exact moment the baby breathes in. For the precise release of the aerosol, the measurement signal controls the micro valve via an intelligent algorithm. “The timing of the inhalation must be caught with an accuracy of about 20 milliseconds. Placing normal sensors in the exhalation region of a respirator does not permit this level of precision,” explains the researcher. The breath-triggered inhalation systems currently available are either reliant on measuring the breath signal in the breathing hose or else coupled to the ventilation system via an electrical connection. “Our ventilator-independent respiration recording system removes the need to interfere with an already approved device and thus reduces approval obstacles.”

Both the sensor film with ultra-thin ICs and the breath-triggered technology are being developed by a consortium in the FLEXMAX project (see box). The German Federal Ministry of Education and Research (BMBF) is funding the project, which addresses key aspects of the New Electronic Systems for Intelligent Medical Engineering (Smart Health) tender.

In tests with adults and in trials using devices that simulate the breathing of premature babies, there was an increase in efficiency of 60 percent compared to conventional inhalation technology. To be able to test the sensor film at an early stage in realistic conditions, the project partners are also developing an artificial abdominal wall that moves like that of a premature baby.

The complete inhalation system is currently available as a demonstrator, and it will take about three to five years before it is production-ready, says Pohlmann.

Breath-triggered administration of dry-powder drugs

The team of experts at Fraunhofer ITEM are also carrying out research into application systems for the administration of dry-powder formulas by means of inhalation, which could be used, for example, to treat premature babies with infant respiratory distress syndrome. This syndrome arises when the not fully developed lung either does not produce enough surfactant or does not produce any at all. Without surfactant, which reduces surface tension in the pulmonary alveoli, the lung is unable to expand. The baby suffers from oxygen deprivation and breathing distress and needs artificial respiration. Usually, surfactant obtained from animal lungs is flushed into the lung in the form of a suspension. The problem is that this so-called instillation is traumatic and the surfactant administered in a suspension does not spread as evenly through the lungs as aerosols do. In contrast, if the surfactant is administered as a moistened dry aerosol to be inhaled, it is distributed more homogeneously and works more effectively.

Source:

https://www.fraunhofer.de/en/press/research-news/2018/december/gentle-treatment-for-premature-babies-with-lung-diseases.html

Tagged with:

About author

Related Articles