Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Honeybee protein keeps stem cells youthful | News Center

Honeybee protein keeps stem cells youthful | News Center

A mammalian protein similar in structure to the active component of honeybee royal jelly — the queen-making goop that helps worker bees raise a new egg-laying diva for the hive — functions as kind of a fountain of youth for mouse embryonic stem cells, according to researchers at the Stanford University School of Medicine

The protein causes the cells to remain pluripotent, meaning they can become any cell in the body, under conditions that would normally trigger them to develop into specialized cells. 

The unexpected finding is likely to fan the flames of a millennia-old debate as to the regenerative power of royal jelly. More importantly, the discovery reveals new pathways to pluripotency and suggests novel ways to keep stem cells in a state of suspended animation until needed for future therapies. 

“In folklore, royal jelly is kind of like a super-medicine, particularly in Asia and Europe,” said assistant professor of dermatology Kevin Wang, MD, PhD, “but the DNA sequence of royalactin, the active component in the jelly, is unique to honeybees. Now, we’ve identified a structurally similar mammalian protein that can maintain stem cell pluripotency.”

Wang is the senior author of the study, which was published Dec. 4 in Nature Communications. Associate professor of surgery Derrick Wan, MD, is the lead author. 

Component of hive hierarchy

Royal jelly is a critical component in the strict hierarchical structure of the honeybee hive. Under normal conditions, a single queen lays fertilized eggs that develop into female worker bees. These worker bees slave away collecting pollen and nectar, building the honeycomb, laying unfertilized eggs and tending to larvae. In contrast, the drones loll about the hive, rousing themselves every so often to meet up with other drones at designated “drone congregation areas” where they hover until a new queen flies by and incites a mating riot.

Eventually, a new queen is needed for the hive when an old queen dies or the hive grows too large and needs to split into two. In this case, the worker bees select a few female larvae to nurture exclusively with royal jelly — a viscous, slightly acidic substance composed of water, proteins and sugars — during their development. All larvae are fed with royal jelly for the first few days after hatching, but worker larvae are quickly switched to a combination of royal jelly, honey and a pollen concoction known as “bee bread.” 

Exactly how a royal jelly diet stimulates the formation of a large, fertile queen rather than a lowly worker bee has remained elusive. But humans quickly decided that what’s good for the queen must be good for them. Although royal jelly has been suggested to have effects on cholesterol levels, blood pressure, nervous system and hormonal activity, it has not been approved by the Food and Drug Administration for medicinal use.

‘How does this happen?’

Wang wondered how a royal jelly diet could trigger the extreme differences seen between queen bees and the much smaller workers. After all, the two insect castes share an identical genome.                   

“I’ve always been interested in the control of cell size,” Wang said, “and the honeybee is a fantastic model to study this. These larvae all start out the same on day zero, but end up with dramatic and lasting differences in size. How does this happen?” 

Wang and his colleagues focused on a protein — appropriately called royalactin — that previously had been suggested to be the active ingredient in royal jelly. They applied royalactin to mouse embryonic stem cells to study the cells’ response. 

“For royal jelly to have an effect on queen development, it has to work on early progenitor cells in the bee larvae,” Wang said. “So we decided to see what effect it had, if any, on embryonic stem cells.” 

Embryonic stem cells are potent, but fickle. When grown in the laboratory, they often want to abandon their stem cell state and differentiate into specialized cells. Researchers have devised ways to keep the cells in line by adding molecules that inhibit differentiation to the environment in which the cells grow. 

We’ve connected something mythical to something real.

To their surprise, Wang and colleagues found that the addition of royalactin stopped the embryonic stem cells from differentiating, even in the absence of the inhibitors.  

“This was unexpected,” Wang said. “Normally, these embryonic stem cells are grown in the presence of an inhibitor called leukemia inhibitor factor that stops them from differentiating inappropriately in culture, but we found that royalactin blocked differentiation even in the absence of LIF.” The cultured LIF-free cells grew happily for up to 20 generations without losing their “stemness,” the researchers found. 

Additional experiments showed that the royalactin-treated stem cells exhibited gene-expression profiles similar to stem cells grown in the presence of the inhibitors, churning out proteins known to be associated with pluripotency while tamping down the production of proteins important for differentiation. Yet the cells’ response was confusing because mammals don’t make royalactin.  

For answers, the researchers turned to a database that infers the three-dimensional structure of proteins. Like a lock and key, many proteins work by fitting precisely together with other proteins or biological molecules. The scientists wondered whether there might be another protein in mammals that mimics the shape, but not the sequence, of royalactin. 

Wang found a mammalian protein called NHLRC3 that was predicted to form a structure similar to royalactin and that was produced early in embryonic development in all animals from eels to humans. Furthermore, they discovered that NHLRC3, like royalactin, was able to maintain pluripotency in mouse embryonic cells, and that it caused a similar gene-expression pattern in them as in those cells exposed to royalactin. They renamed the protein Regina, which is Latin for queen. 

The researchers next plan to investigate whether Regina has any therapeutic value in wound healing or cell regeneration in adult animals. They also hope their finding will help researchers discover more or better ways to keep embryonic stem cells pluripotent when grown in the laboratory. 

“It’s fascinating,” Wang said. “Our experiments imply Regina is an important molecule governing pluripotency and the production of progenitor cells that give rise to the tissues of the embryo. We’ve connected something mythical to something real.” 

Other Stanford co-authors are former graduate student Stefanie Morgan, PhD; graduate student Andrew Spencley; former life sciences research technician Natasha Mariano; research technician Erin Chang; former bioinformatician Gautam Shankar; former postdoctoral scholar Yunhai Luo, PhD; undergraduate students Ted Li, Dana Huh and Star Huynh; former research technician Jasmine Garcia; postdoctoral scholar Cole Dovey, PhD; former research scientist Jennifer Lumb, PhD; instructor Ling Liu, PhD; former postdoctoral scholar Katharine Brown, PhD; life sciences research professional Abel Bermudez; former senior research scientist Richard Luong; senior research scientist Hong Zeng, MD, PhD; associate professor of radiology Sharon Pitteri, PhD; former postdoctoral scholar Marco Quarta, PhD; assistant professor of obstetrics and gynecology Vittorio Sebastiano, PhD; professor of developmental biology Roel Nusse, PhD; professor of neurology and neurological sciences Thomas Rando, MD, PhD; and assistant professor of microbiology and immunology Jan Carette, PhD. 

The research was supported by the National Institutes of Health (grant DE024269), the National Science Foundation, a National Defense Science and Engineering Graduate fellowship, the Stanford Maternal & Child Health Research Institute, the Burroughs Wellcome Fund and the Donald E. and Delia B. Baxter Foundation. 

Stanford’s Department of Dermatology also supported the work.

Tagged with:

About author

Related Articles