Breaking News
February 19, 2019 - Customized Micropatterning for Improved Physiological Relevance
February 19, 2019 - Unique gene therapy approach paves new way to tackle rare, inherited diseases
February 19, 2019 - Activating gene that helps excite neurons reverses depression in male mice
February 19, 2019 - Science Puzzling Out Differences in Gut Bacteria Around the World
February 19, 2019 - Cells that destroy the intestine
February 19, 2019 - On recovery, vulnerability and ritual: An exhibit in white
February 19, 2019 - Scientific Duo Gets Back To Basics To Make Childbirth Safer
February 19, 2019 - COPD patients need more support when understanding new chest symptoms
February 19, 2019 - Using light-based method for production of pharmaceutical molecules
February 19, 2019 - Scientists find link between inflammation and cancer
February 19, 2019 - The High Cost Of Sex: Insurers Often Don’t Pay For Drugs To Treat Problems
February 19, 2019 - Hearing impairment associated with accelerated cognitive decline with age
February 19, 2019 - Researchers identify multiple genetic variants associated with body fat distribution
February 19, 2019 - Influenza and common cold are completely different diseases, study shows
February 19, 2019 - Scientists untangle how microbes manufacture key antibiotic compound
February 19, 2019 - Greater primary care physician supply associated with longer life spans
February 19, 2019 - HIV-1 protein suppresses immune response more broadly than thought
February 19, 2019 - For 2020 Dem Hopefuls, ‘Medicare-For-All’ Is A Defining Issue, However They Define It
February 19, 2019 - KU professor discusses promise of brain-computer interface to aid, restore communication
February 19, 2019 - Highly effective solution for detecting onset of aggregation in nanoparticles
February 19, 2019 - Early marker of cardiac damage triggered by cancer treatment identified
February 19, 2019 - Antidepressant drug could save people from deadly sepsis, research suggests
February 19, 2019 - CRISPR technology creates pluripotent stem cells that are ‘invisible’ to the immune system
February 19, 2019 - New study establishes how stress favors breast cancer growth and spread
February 19, 2019 - Midlife Systemic Inflammation Linked to Later Cognitive Decline
February 19, 2019 - Therapy derived from parasitic worms downregulates proinflammatory pathways
February 19, 2019 - Antimicrobial reusable coffee cups are less likely to become contaminated with bacteria, study shows
February 19, 2019 - Harnessing the evolutionary games played by cancer cells to advance therapies
February 19, 2019 - AHA News: Heart Transplant Survivor Gets Wedding Proposal at Finish Line
February 19, 2019 - HIV hidden in patients’ cells can now be accurately measured
February 19, 2019 - Research finds reasons for sudden cardiac death in patients with stable ischemic disease
February 19, 2019 - New protocol could help physicians to rule out bacterial infections in infants
February 19, 2019 - Women experiencing miscarriage should be offered treatment choices
February 19, 2019 - New protocol can help identify febrile infants at low risk for serious bacterial infections
February 19, 2019 - Innovative way to block HIV runs into a roadblock
February 19, 2019 - Springer Nature with BCRF conduct pilot project to make their research datasets more accessible
February 19, 2019 - Study finds neuromelanin-sensitive MRI as potential biomarker for psychosis
February 19, 2019 - Improvements in cardiovascular care for elderly save billions in health care costs
February 19, 2019 - Chilean food regulations are changing food perceptions and purchasing habits, study suggests
February 19, 2019 - Index endoscopy results are crucial for assessment of Barrett’s patients
February 18, 2019 - Breast cancer screening age should be lowered to 35
February 18, 2019 - Brain synchronization depends on the language of communication
February 18, 2019 - Drug Company Payments Over Time May Influence Rx Practices
February 18, 2019 - Despite socioeconomic gains, black-white ‘health gap’ remains
February 18, 2019 - Researchers report progress in the treatment of aggressive brain tumors
February 18, 2019 - Scientists discover trigger that turns strep infections into devastating disease
February 18, 2019 - Scanning children’s teeth may predict future mental health issues
February 18, 2019 - Health Highlights: Feb. 14, 2019
February 18, 2019 - New knowledge could help predict and prevent depression
February 18, 2019 - More primary care physicians leads to longer life spans | News Center
February 18, 2019 - Study examines link between supply of primary care physicians and life expectancy
February 18, 2019 - New study assesses screen time in young children
February 18, 2019 - Patented IU discovery to treat ARDS has been optioned to Theratome Bio
February 18, 2019 - Software found to be four times better at monitoring ovarian cancer
February 18, 2019 - Male Y chromosomes not ‘genetic wastelands’
February 18, 2019 - Hormone therapy during gender transition may increase risk for cardiovascular events
February 18, 2019 - NICE renews accreditation for Advanced
February 18, 2019 - FDA Grants Orphan Drug Designation to Amplyx Pharmaceuticals for APX001 for Treatment of Cryptococcosis
February 18, 2019 - Molecule effective in killing tuberculosis bacteria
February 18, 2019 - Columbia researchers unravel why some glioblastomas respond to immunotherapy
February 18, 2019 - Men who are able to do ten push-ups are less likely to have a stroke
February 18, 2019 - Blood-brain barrier disruption could lead to age-related cognitive decline
February 18, 2019 - Combination of PARP inhibitor and immunotherapy results in tumor regression in SCLC mouse models
February 18, 2019 - Heavy smoking could lead to vision loss, study finds
February 18, 2019 - New diagnostic test for malaria uses spit, not blood
February 18, 2019 - New therapeutic molecules show promise in reversing memory loss related to depression, aging
February 18, 2019 - Darla Shine joins anti-vaccination campaigners
February 18, 2019 - New study outlines sex-specific issues in ischemic heart disease
February 18, 2019 - Drug combinations could become first-line treatment for metastatic kidney cancer
February 18, 2019 - Lifetime adversity, increased neural processing during trauma combine to intensify core PTSD symptoms
February 18, 2019 - HRQoL Scores Decrease With Treatment Line in Multiple Myeloma
February 18, 2019 - Convincing evidence that type 2 diabetes is a cause of erectile dysfunction
February 18, 2019 - Study offers implications of advanced age in evaluation, management of ischemic heart disease
February 18, 2019 - Children from homes with flame-retardant sofa have high SVOC concentration in their blood
February 18, 2019 - Art Institute of Chicago announces results of research on five terracotta sculptures
February 18, 2019 - New PET/CT tracer shows high detection rate for diagnosis of acute venous thromboembolism
February 18, 2019 - Smoking may blight immune response against melanoma and reduce survival
February 18, 2019 - How Inactivity and Junk Food Can Harm Your Brain
February 18, 2019 - Diabetes tops common conditions for frequent geriatric emergency patients
February 18, 2019 - Longer-lived sperm produces offspring with healthier lifespans
Scientists support original theory about pancreas regeneration

Scientists support original theory about pancreas regeneration

image_pdfDownload PDFimage_print

A contentious debate among diabetes researchers has surrounded the regeneration of pancreatic insulin-producing cells: not if these cells regenerate, but rather how.

The long-held view that the islets of Langerhans can be replenished from pancreatic stem cells (progenitors) was replaced over the last decade by the notion that islets self-duplicate from existing cells. Now, in a manuscript published online in Trends in Endocrinology & Metabolism, scientists from the Diabetes Research Institute at the University of Miami draw categorical conclusions in support of the original theory that progenitors in the pancreas do exist and, moreover, that these stem cells may regenerate in human patients. The ability to regrow a person’s own insulin-producing cells would address a major challenge in type 1 diabetes and represent a significant step toward developing a biological cure for this life-threatening disease.

“We have demonstrated that there are progenitors in the adult pancreas, not only in mice but in humans, which is a very important clarification, and that those cells can potentially be stimulated through pharmacological means to induce regeneration in patients with type 1 diabetes. That is the ‘Holy Grail’ of what we are trying to achieve here at the DRI,” said Juan Dominguez-Bendala, Ph.D., director of pancreatic stem cell development for translational research and co-author of the paper with Ricardo Pastori, Ph.D., director of molecular biology.

Flawed Techniques Shift the Hypothesis

In the 1980s, researchers logically concluded that the pancreas harbors progenitor cells capable of regenerating endocrine (insulin-producing) cells after an islet was photographed sprouting from an adult pancreatic duct. Over the three decades that followed, dozens of reports further reinforced the idea that a variety of growth factors could stimulate ductal cells to differentiate into all pancreatic cell types, including insulin-producing cells.

That long-standing view was challenged in 2004, when tests using lineage tracing (LT), a technique that tracks the origin of a cell’s development, performed in mice, showed that the insulin-producing cells were replenished by replication of existing cells, rather than from the growth of new ones. While the study did not disprove the existence of progenitor cells, it succeeded in shifting the prevailing thought in the scientific community.

According to the DRI team, however, those conclusions were largely derived using an unreliable tool in an inadequate model. Striking differences between islets of mice and humans are not simply a matter of scale. There are vast anatomic and functional differences between the islets of these two species that call into question the validity of the mouse model to draw conclusions about pancreatic regeneration in humans.

The use of lineage tracing in rodents has also yielded contradictory results. While LT is a powerful tool that has been used for several decades to track the path and origins of stem-cell maturation, it has a number of limitations and carries a potential bias in scientific outcomes.

“The hypothesis that the pancreas harbors progenitor cells has been discredited for a number of years, but we believe that many of the techniques used to reach that conclusion were flawed. We have found profound differences in the behavior of human cells vs. mouse cells in the pancreas and we think it’s important to highlight and emphasize the regeneration processes in human cells,” said Dr. Dominguez-Bendala. “Clearly, our work and the work of others is actually contributing to the notion that we have stem cells in the adult pancreas, and that we can potentially exploit those cells to our benefit for the treatment of type 1 diabetes.”

Harnessing the Body’s Ability to Heal Itself

Type 1 diabetes is an autoimmune condition in which the insulin-producing cells of the pancreas have been mistakenly destroyed by the immune system, requiring patients to manage their blood sugar levels through a daily regimen of insulin therapy. Islet transplantation has allowed some patients with type 1 diabetes to live without the need for insulin injections after receiving infusions of donor cells. However, there are not enough cells to treat the millions of patients who can benefit. Thus far, research efforts have focused primarily on creating more pancreatic cells for transplant from sources like embryonic (hESc), pluripotent (hPSc) and adult stem cells, and porcine (pig) islets, among others. A more efficient and potentially safer solution could lie in regenerating a patient’s own insulin-producing cells, sidestepping the need to transplant donor tissue altogether and eliminating other immune-related roadblocks.

“If we could give the patient something that will promote the proliferation and subsequent differentiation of those cells that are already in the pancreas into beta cells while controlling autoimmunity, we could harness the natural ability of the body to heal itself. We think that would open a whole new therapeutic horizon,” said Dr. Dominguez-Bendala.

Source:

https://www.diabetesresearch.org/is-the-pancreas-regeneration-debate-settled

Tagged with:

About author

Related Articles