Breaking News
April 26, 2019 - The Inflamed Brain | NIH News in Health
April 26, 2019 - Stress-free training may enhance surgical skill
April 26, 2019 - Newsom: California Leads On Prescription Drugs
April 26, 2019 - Exploring novel strategies to heal damage after a heart attack
April 26, 2019 - Small army of tiny robots can remove dental plaque
April 26, 2019 - Cellular communication in emotion-processing brain region motivates us to keep eating tasty food
April 26, 2019 - Greater spousal life satisfaction associated with lower mortality risk
April 26, 2019 - Genetic mutations in brain development lead to discovery of rare genetic diseases
April 26, 2019 - Speech-Based Algorithm Helps ID Posttraumatic Stress Disorder
April 26, 2019 - First birth via robot-assisted uterus transplant
April 26, 2019 - CircRNAs bind to dsRNA-activated protein kinase which is linked to innate immunity
April 26, 2019 - MR Solutions wins third Queen’s Award
April 26, 2019 - Study details how optimism can bias prognosis in serious illness
April 26, 2019 - Vascular surgery after firearm injury linked with higher morbidity and mortality
April 26, 2019 - New findings about aggressive blood cancer may help develop drugs with less harmful side effects
April 26, 2019 - People with intense feelings of responsibility susceptible to developing OCD, anxiety
April 26, 2019 - Despite expansion of insurance coverage for depression, treatment rates are lower than expected
April 26, 2019 - Huge Malaria vaccine trial in Malawi
April 26, 2019 - Can Obesity Shrink Your Brain?
April 26, 2019 - This oral appliance could help you (and your partner) sleep better
April 26, 2019 - Myelination deficits cause abnormal hypersocial behavior associated with Williams syndrome
April 26, 2019 - New sepsis detector uses photonics to make accurate diagnosis in less than thirty minutes
April 26, 2019 - New study describes process to diagnose rare genetic diseases in record time
April 26, 2019 - Scientists and patients gather in Vancouver to discuss about Stevens-Johnson syndrome
April 26, 2019 - Advance in breakthrough cancer treatment eliminates serious side effects
April 26, 2019 - Discovery about cold sensing could pave way for new pain relief drugs
April 26, 2019 - Children often turn to sugary drinks instead of water
April 26, 2019 - Genome analysis shows the combined effect of many genes on cognitive traits
April 26, 2019 - Patients Caught In Middle Of Fight Between Health Care Behemoths
April 26, 2019 - Drug overdoses among adolescents and young adults on the rise
April 26, 2019 - Implementing a Paperless QC Micro Laboratory”
April 25, 2019 - Obesity linked to a reduction in gray matter
April 25, 2019 - Smart assistants could help combat opioid crisis
April 25, 2019 - Diagnostic stewardship strategy reduces inappropriate testing
April 25, 2019 - Three-antibiotic cocktail eradicates ‘persister’ Lyme bacteria in mouse model
April 25, 2019 - Study investigates how early blindness shapes sound processing
April 25, 2019 - Outcomes Worse for Cancer Patients Seen at Noncancer EDs
April 25, 2019 - Link found between temperament of high-risk infants and obesity
April 25, 2019 - Al Letson explores ties between journalists and doctors at Medicine and the Muse symposium
April 25, 2019 - New mobile phone game can detect people at risk of Alzheimer’s
April 25, 2019 - Scientists discover trigger region for absence epileptic seizures
April 25, 2019 - Stretchy wearable patch can do a health check while you work out
April 25, 2019 - Exercise activates brain circuits associated with memory in older adults
April 25, 2019 - Veggies, Fruits and Grains Keep Your Heart Pumping
April 25, 2019 - Healthy meal kits can boost children’s long-term health
April 25, 2019 - Designing an inexpensive surgical headlight: A Q&A with a Stanford surgeon
April 25, 2019 - States Weigh Banning A Widely Used Pesticide Even Though EPA Won’t
April 25, 2019 - Integrator complex proteins are crucial for healthy brain development in fruit flies, study finds
April 25, 2019 - Device converts brain signals into speech, offering hope for patients
April 25, 2019 - Measles vaccination rates are a ‘public health time bomb’
April 25, 2019 - Maths made easier for scientists students who shun the subject wins award
April 25, 2019 - Researchers decode how cancer drug works in brains of Parkinson’s disease patients
April 25, 2019 - Smarter Brain Cancer Trial Comes to Columbia
April 25, 2019 - Researchers Seek Sage Advice Of Elders On Aging Issues
April 25, 2019 - New chemical synthesis strategy leads to identification of novel, simpler derivatives
April 25, 2019 - Vanderbilt investigators discover link between vascular biology and eye disease
April 25, 2019 - Feces transplantation is effective and provides economic benefits
April 25, 2019 - Eisenhower Health first in Southern California to offer new lung valve treatment for COPD/emphysema
April 25, 2019 - Johns Hopkins researchers uncover role of neurotransmitter in the spread of aggressive cancers
April 25, 2019 - Porvair Sciences offers highly effective P3 microplate for biological sample clean-up
April 25, 2019 - Air pollution increases risk for respiratory hospitalization among childhood cancer survivors
April 25, 2019 - We are sitting more! How bad is that?
April 25, 2019 - Majority of stroke survivors not screened for osteoporosis, despite increased risk
April 25, 2019 - ADHD Screening: MedlinePlus Lab Test Information
April 25, 2019 - Cellular alterations increase vulnerability of obese and diabetic individuals to infection
April 25, 2019 - Association Insurance Pushes On Despite Court Ruling
April 25, 2019 - Traditional and e-cigarette users may be more receptive to smoking cessation interventions
April 25, 2019 - Delving into tumor’s cellular lineage may offer clues for customized therapies
April 25, 2019 - Two studies uncover brain mechanisms underlying decision making process
April 25, 2019 - Cardiometabolic Risk Better ID’d in Children Reclassified to Higher BP
April 25, 2019 - How the obesity epidemic is taking a toll on our bones and joints
April 25, 2019 - E-cigarettes contaminated with dangerous microbial toxins
April 25, 2019 - Researchers document specific characteristics of storefront tobacco advertisements
April 25, 2019 - Oncotype DX-guided treatment could reduce cost for breast cancer care, study suggests
April 25, 2019 - Predicting whether a patient will benefit from chemotherapy
April 25, 2019 - New review highlights how lifestyle affects our genes
April 25, 2019 - Study provides evidence that blood tests can detect Alzheimer’s risk
April 25, 2019 - Computer program mimics natural speech using brain signals from epilepsy patients
April 25, 2019 - Physicians turning to antibiotic alternatives for long-term acne treatment
April 25, 2019 - Preschool Is Prime Time to Teach Healthy Lifestyle Habits
MIT researchers develop antimicrobial peptides from South American wasp’s venom

MIT researchers develop antimicrobial peptides from South American wasp’s venom

image_pdfDownload PDFimage_print

Altered peptides from a South American wasp’s venom can kill bacteria but are nontoxic to human cells

The venom of insects such as wasps and bees is full of compounds that can kill bacteria. Unfortunately, many of these compounds are also toxic for humans, making it impossible to use them as antibiotic drugs.

After performing a systematic study of the antimicrobial properties of a toxin normally found in a South American wasp, researchers at MIT have now created variants of the peptide that are potent against bacteria but nontoxic to human cells.

In a study of mice, the researchers found that their strongest peptide could completely eliminate Pseudomonas aeruginosa, a strain of bacteria that causes respiratory and other infections and is resistant to most antibiotics.

“We’ve repurposed a toxic molecule into one that is a viable molecule to treat infections,” says Cesar de la Fuente-Nunez, an MIT postdoc. “By systematically analyzing the structure and function of these peptides, we’ve been able to tune their properties and activity.”

De la Fuente-Nunez is one of the senior authors of the paper, which appears in the Dec. 7 issue of the journal Nature Communications Biology. Timothy Lu, an MIT associate professor of electrical engineering and computer science and of biological engineering, and Vani Oliveira, an associate professor at the Federal University of ABC in Brazil, are also senior authors. The paper’s lead author is Marcelo Der Torossian Torres, a former visiting student at MIT.

Venomous variants

As part of their immune defenses, many organisms, including humans, produce peptides that can kill bacteria. To help fight the emergence of antibiotic-resistant bacteria, many scientists have been trying to adapt these peptides as potential new drugs.

The peptide that de la Fuente-Nunez and his colleagues focused on in this study was isolated from a wasp known as Polybia paulista. This peptide is small enough — only 12 amino acids — that the researchers believed it would be feasible to create some variants of the peptide and test them to see if they might become more potent against microbes and less harmful to humans.

“It’s a small enough peptide that you can try to mutate as many amino acid residues as possible to try to figure out how each building block is contributing to antimicrobial activity and toxicity,” de la Fuente-Nunez says.

Like many other antimicrobial peptides, this venom-derived peptide is believed to kill microbes by disrupting bacterial cell membranes. The peptide has an alpha helical structure, which is known to interact strongly with cell membranes.

In the first phase of their study, the researchers created a few dozen variants of the original peptide and then measured how those changes affected the peptides’ helical structure and their hydrophobicity, which also helps to determine how well the peptides interact with membranes. They then tested these peptides against seven strains of bacteria and two of fungus, making it possible to correlate their structure and physicochemical properties with their antimicrobial potency.

Based on the structure-function relationships they identified, the researchers then designed another few dozen peptides for further testing. They were able to identify optimal percentages of hydrophobic amino acids and positively charged amino acids, and they also identified a cluster of amino acids where any changes would impair the overall function of the molecule.

Fighting infection

To measure the peptides’ toxicity, the researchers exposed them to human embryonic kidney cells grown in a lab dish. They selected the most promising compounds to test in mice infected with Pseudomonas aeruginosa, a common source of respiratory and urinary tract infections, and found that several of the peptides could reduce the infection. One of them, given at a high dose, could eliminate it completely.

“After four days, that compound can completely clear the infection, and that was quite surprising and exciting because we don’t typically see that with other experimental antimicrobials or other antibiotics that we’ve tested in the past with this particular mouse model,” de la Fuente-Nunez says.

The researchers have begun creating additional variants that they hope will be able to clear infections at lower doses. De la Fuente-Nunez also plans to apply this approach to other types of naturally occurring antimicrobial peptides when he joins the faculty of the University of Pennsylvania next year.

“I do think some of the principles that we’ve learned here can be applicable to other similar peptides that are derived from nature,” he says. “Things like helicity and hydrophobicity are very important for a lot of these molecules, and some of the rules that we’ve learned here can definitely be extrapolated.”

Source:

http://news.mit.edu/2018/repurpose-wasp-venom-antibiotic-drug-1207

Tagged with:

About author

Related Articles