Breaking News
January 18, 2019 - Researchers develop artificial enzymatic pathway for synthesizing isoprenoids in E. coli
January 18, 2019 - Scientists advise caution in immunotherapy research
January 18, 2019 - How children across the world develop language
January 18, 2019 - Columbia Medical Student Receives McDonogh Scholarship
January 18, 2019 - Secretive ‘Rebate Trap’ Keeps Generic Drugs For Diabetes And Other Ills Out Of Reach
January 18, 2019 - Plant based diet could be the best option for the planet says commission
January 18, 2019 - New conservation practice could reduce nitrogen from agricultural drainage, study shows
January 18, 2019 - UIC researchers receive $1.7 million NCI grant to study Southeast Asian fruit
January 18, 2019 - New study determines the fate of DNA derived from genetically modified food
January 18, 2019 - Scientists develop new gene therapy that prevents axon destruction in mice
January 18, 2019 - Study finds critically low HPV vaccination rates among younger adolescents in the U.S.
January 18, 2019 - Brain cells involved in memory play key role in reducing future eating behavior
January 18, 2019 - Risk for Conversion of MS Varies With Different Therapies
January 18, 2019 - Investigational cream may help patients with inflammatory skin disease
January 18, 2019 - Medical school news office receives six writing awards | News Center
January 18, 2019 - County By County, Researchers Link Opioid Deaths To Drugmakers’ Marketing
January 18, 2019 - Research reveals risk for developing more than one mental health disorder
January 18, 2019 - Scientists discover a dramatic pattern of bone growth in female mice
January 18, 2019 - Study finds link between lengthy periods of undisturbed maternal sleep and stillbirths
January 18, 2019 - New nuclear medicine method could improve detection of primary and metastatic melanoma
January 18, 2019 - Combination therapy shows high efficacy in treating people with leishmaniasis and HIV
January 18, 2019 - Health Tip: Don’t Ignore Changes in Skin Color
January 18, 2019 - Dietary Recommendations for Healthy Children
January 18, 2019 - Eliminating the latent reservoir of HIV
January 18, 2019 - Pain From The Government Shutdown Spreads. This Time It’s Food Stamps
January 18, 2019 - Newly discovered regulatory mechanism helps control fat metabolism
January 18, 2019 - New rapid blood tests could speed up TB diagnosis, save the NHS money
January 18, 2019 - Researchers develop intelligent system for ‘tuning’ powered prosthetic knees
January 18, 2019 - Monoclonal antibody pembrolizumab prolongs survival in patients with squamous cell carcinoma
January 18, 2019 - New research detects mosquito known to transmit malaria for the first time in Ethiopia
January 18, 2019 - ACCC survey finds multiple threats to growth of cancer programs
January 18, 2019 - Meeting the challenge of engaging men in HIV prevention and treatment
January 18, 2019 - Furloughed Feds’ Health Coverage Intact, But Shutdown Still Complicates Things
January 18, 2019 - Experts discuss various aspects on health risks posed by fumigated containers
January 18, 2019 - Researchers use gene-editing tool CRISPR/Cas9 to limit impact of parasitic diseases
January 18, 2019 - Alpha neurofeedback training could be a means of enhancing learning success
January 18, 2019 - Innovative ‘light’ method demonstrates positive results in fight against malignant tumors
January 18, 2019 - The cytoskeleton of neurons found to play role in Alzheimer’s disease
January 18, 2019 - New resource-based approach to improve HIV care in low- and middle-income countries
January 18, 2019 - Bedfont appoints Dr Jafar Jafari as first member of the Gastrolyzer Medical Advisory Board
January 18, 2019 - New study shows link between secondhand smoke and cardiac arrhythmia
January 18, 2019 - DZIF scientists reveal problems with available diagnostics for Zika and chikungunya virus
January 18, 2019 - Breast cancers more likely to metastasize in young women within 10 years of giving birth
January 18, 2019 - Over 5.6 million Americans exposed to high nitrate levels in drinking water
January 18, 2019 - Blood vessels can now be created perfectly in a petri dish
January 18, 2019 - Study identifies prominent socioeconomic and racial disparities in health behavior in Indiana
January 18, 2019 - Young-Onset Type 2 Diabetes Tied to Increased Hospitalization Risk
January 18, 2019 - For-profit nursing schools associated with lower performance on nurse licensure test
January 18, 2019 - Considering the culture of consent in medicine
January 18, 2019 - Researchers identify comprehensive guidelines for managing severe atopic dermatitis
January 18, 2019 - Analyzing proteins in blister fluid may classify burn severity more accurately
January 18, 2019 - Study finds higher suicide rates among youth who were Medicaid enrollees
January 18, 2019 - Opioid drugs often overprescribed to children for pain relief, say CHOP surgeons
January 18, 2019 - New biodegradable wound dressing material accelerates healing
January 18, 2019 - Life in Space May Take Toll on Spinal Muscles
January 18, 2019 - Bulldogs’ screw tails linked to human genetic disease
January 18, 2019 - Immunotherapy target identified for pediatric cancers
January 18, 2019 - Financial stress may increase heart disease risk in African Americans
January 18, 2019 - Scientists solve another piece of Ebola virus puzzle
January 18, 2019 - New project finds how endocrine disruptors interfere with thyroid functions
January 18, 2019 - Research finds decline in ketone body utilization when coronary circulation is reduced
January 18, 2019 - Let’s map our DNA and save billions each year in health costs
January 18, 2019 - AI demonstrates potential to identify irregular heart rhythms as well as humans
January 17, 2019 - Study shows link between air pollution and increased risk of sleep apnea
January 17, 2019 - Neck-strengthening exercises can protect athletes from concussions
January 17, 2019 - Computer model shows how to better control MRSA outbreaks
January 17, 2019 - Pain is unpleasant, and now scientists have identified the set of responsible neurons
January 17, 2019 - CUIMC Celebrates 2018-2019
January 17, 2019 - Study reveals potential pathway for endothelial cells to avoid apoptosis
January 17, 2019 - Hamilton Storage launches LabElite DeCapper SL to expand LabElite product family
January 17, 2019 - Location of epigenetic changes co-locate with genetic signal causing psychartric disorder
January 17, 2019 - Researchers awarded 6.1 million euros to address female fertility problems
January 17, 2019 - Counseling appointments fail to reduce weight gain during pregnancy, shows study
January 17, 2019 - Contraceptive patch that could provide 6 months of contraception within seconds
January 17, 2019 - Yeast model may pave way for development of novel therapies for metabolic disorders
January 17, 2019 - Study determines impact of antibiotic perturbation of the gut microbiome on skeletal health
January 17, 2019 - Cardiometabolic Risk Up With Tourette, Chronic Tic Disorder
January 17, 2019 - Hong Kong scientists claim ‘broad-spectrum’ antiviral breakthrough
January 17, 2019 - Researchers discover the brain cells that make pain unpleasant | News Center
January 17, 2019 - Hepatitis Is Common in New Cancer Patients
CRISPR-Cas9 circular permutants can sense and respond to viral proteases

CRISPR-Cas9 circular permutants can sense and respond to viral proteases

image_pdfDownload PDFimage_print

Using a technique called circular permutation, researchers at the University of California Berkeley have created a new suite of Cas9 variants called Cas9-CPs, which will simplify design of Cas9-fusion proteins for diverse applications beyond simple DNA cutting, such as base editing and epigenetic modifications. The work appears January 10 in the journal Cell.

Through the same process, the researchers turned “always-on” Cas9 molecules into activatable switches that remain in the “off” position until activated by enzymes called proteases. The resulting protease-sensing Cas9s (ProCas9s) could reduce off-target effects and enable molecular sensing, as well as tissue- or organ-specific genome editing. The researchers demonstrated that ProCas9s can be used to detect viral proteases, potentially serving as a pathogen-sensing system capable of triggering an immune response.

We’re not stuck with what nature gave us with regards to genome-editing proteins. These proteins can be elaborately optimized and turned into scaffolds possessing the right properties for use in human cells.”

Senior author David Savage, a biochemist at the University of California, Berkeley

CRISPR-Cas proteins such as Cas9 are enzymes that protect bacteria from invading viruses. This bacterial defense system has been repurposed for genome-editing applications, such as inactivating genes, in a variety of cell types and organisms. Cas9 evolved to be a bacterial defense system, and it doesn’t necessarily possess desired properties for genome editing in mammalian cells, such as extreme accuracy and precision in genome targeting, or the ability to control the spatial and temporal activity of the enzyme.

While Cas9 fusion proteins have been constructed to efficiently edit nucleotides in DNA, or activate or repress transcription through epigenetic modifications – changes that affect gene activity without altering the DNA sequence – each new application requires an in-depth engineering approach with laborious optimization. Another major hurdle is that Cas9 is always in the “on” position. This lack of control over the protein’s activity makes it difficult to target specific cells or tissues, can result in unintentional genome editing and greater off-target genome damage, and prevents the use of Cas9 as a molecular recorder of cellular events.

To overcome these obstacles, Savage and his team used circular permutation to reengineer the molecular sequence of Cas9, thereby achieving better control over its activity and creating a more optimal DNA-binding scaffold for fusion proteins. This Cas9-rewiring approach involves connecting the ends of the protein, i.e., its N- and C-termini, with a peptide linker, while concurrently splitting its sequence at a different position to create new, adjacent N- and C- termini.

The researchers found that Cas9 is highly malleable to circular permutation. Several regions of the protein possess hotspots that can be opened at numerous positions to generate a diversity of Cas9-CPs, which could serve as scaffolds for advanced fusion proteins. Currently, the N- and C- termini of Cas9 are fixed, and they are not ideally placed for fusion proteins to gain access to DNA. By contrast, the termini of the new protein scaffolds are placed closer to the DNA-interacting interface of the protein, and are optimized for the efficient construction of fusion proteins.

The researchers next generated ProCas9s by engineering the peptide linker, making the linker short enough to constrict the protein into an inactive state, and then introducing sequences that could be cleaved by matching viral proteases. These ProCas9s were then tuned to serve as altruistic defense systems that could detect and respond to pathogens, generating massive DNA damage and killing infected cells when they were activated through cleavage of the linker peptide.

I can envision various biomedical applications where the Cas9-CPs and ProCas9s will allow us to better understand disease processes and also enable safer translational applications of CRISPR-Cas genome editing and modification.”

Co-first author Christof Fellmann of the University of California, Berkeley

In future studies, the researchers will work on developing Cas9-fusion proteins for base editing and epigenetic modifications. In addition, they plan to test whether ProCas9s can be used to build an entire synthetic immune system. It may also be possible to develop ProCas9s that are sensitive to endogenous proteases to target specific cells, for example, to edit the genomes of cancerous cells.

Our ProCas9 system is useful in any instance where having control of Cas9 would be useful.”

David Savage

Source:

http://www.cellpress.com/

Tagged with:

About author

Related Articles