Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Researchers discover new drug cocktail that increases human beta cell proliferation at rapid rates

Researchers discover new drug cocktail that increases human beta cell proliferation at rapid rates

insulin
High-resolution model of six insulin molecules assembled in a hexamer. Credit: Isaac Yonemoto/Wikipedia

Researchers at the Icahn School of Medicine at Mount Sinai have discovered a novel combination of two classes of drugs that induces the highest rate of proliferation ever observed in adult human beta cells—the cells in the pancreas that produce insulin. The result is an important step toward a diabetes treatment that restores the body’s ability to produce insulin.

The finding involved one drug that inhibits the enzyme dual specificity tyrosine-regulated kinase 1A (DYRK1A) and another that inhibits transforming growth factor beta superfamily members (TGFβSF). Together, they caused the cells to proliferate at a rate of 5 to 8 percent per day. The study, titled “Combined Inhibition of DYRK1A, SMAD and Trithorax Pathways Synergizes to Induce Robust Replication in Adult Human Beta Cells,” was published today in Cell Metabolism.

“We are very excited about this new observation because for the first time, we are able to see rates of human cell beta cell replication that are sufficient to replenish beta cell mass in human beings,” said Andrew Stewart, MD, Director of the Mount Sinai Diabetes, Obesity, and Metabolism Institute and lead author of the study. “We have discovered a drug combination that makes beta cells regenerate at rates that are suitable for treatment. The next big hurdle is figuring out how to deliver them directly to the pancreas.”

According to Dr. Stewart, none of the diabetes drugs currently on the market can induce beta cell regeneration in people with diabetes. In parallel with the Mount Sinai work, other researchers are studying pancreatic transplantation, beta cell transplantation, and stem cell replacement of beta cells for people with diabetes, but none of these approaches is in widespread use. Approximately 30 million people in the United States have diabetes and nearly 50 to 80 million more are living with prediabetes (also called “metabolic syndrome”). Diabetes occurs when there are not enough beta cells in the pancreas, or when those beta cells secrete too little insulin, the hormone required to keep blood sugar levels in the normal range. Diabetes can lead to major medical complications: heart attack, stroke, kidney failure, blindness, and limb amputation.

Loss of insulin-producing beta cells has long been recognized as a cause of type 1 diabetes, in which the immune system mistakenly attacks and destroys beta cells. In recent years, researchers have concluded that a deficiency of functioning beta cells is also an important contributor to type 2 diabetes, the most common type that occurs in adults. Thus, developing drugs that can increase the number of healthy beta cells is a major priority in diabetes research.

This current paper builds upon a study that Dr. Stewart and his team published in Nature Medicine in 2015, showing that a drug called harmine drove sustained division and multiplication of adult human beta cells in culture. They also learned that harmine treatment led to normal control of blood sugar in mice whose beta cells had been replaced with human beta cells. While this was a major advance, the proliferation rate was lower than needed to rapidly expand beta cells in people with diabetes.

In 2017, Dr. Stewart and his team published a second paper, in Nature Communications, which revealed the genetic abnormalities in insulinomas, a benign type of human beta cell tumor, and served as a “genetic recipe” to reveal targets for new drugs that can make beta cells regenerate.

In this current paper, Dr. Stewart and his team took advantage of the insulinoma “genetic recipe” which suggested that a combination of two classes of drugs—a DYRK1A inhibitor such as harmine with a TGFβSF inhibitor drug—would be able to synergistically increase beta cell regeneration. This proved to be true. However, this new drug combination is not without its hurdles. “Since these drugs have effects on other organs in the body, we now need to develop methods to deliver these drugs specifically to the beta cell in humans,” said Dr. Stewart. “We have the packages to deliver, but now we need a courier system to deliver them to the exact beta cell address.”

“Beta cell regeneration is a ‘holy grail’ for the treatment of diabetes,” said Peng Wang, Ph.D., Associate Professor of Medicine (Endocrinology, Diabetes, and Blood Disease) at Mount Sinai and first author on the study. “We are excited to finally have drugs that can induce beta cell proliferation at rates that are likely to be effective in people with type 1 and type 2 diabetes.”

“This is one of the most exciting series of discoveries in the field of diabetes and is a key next step in drug development for this disease,” said Dennis S. Charney, MD, Anne and Joel Ehrenkranz Dean, Icahn School of Medicine at Mount Sinai. “In a very short time, Dr. Stewart and his team of researchers have made incredible progress. Their important work truly holds promise for so many people.”

“We know that in order to achieve a cure for type 1 diabetes and to bring people to insulin independence, we will have to find ways to increase the numbers of functional beta cells,” said Francis J. Martin, Ph.D., Associate Director of Research and leader of the JDRF Beta Cell Regeneration and Survival Program. “Now, through the work of Drs. Stewart and Wang, we see that we can increase the rates of human beta cell reproduction to levels that were previously thought to be impossible. There are still challenges ahead, but this work brings us a little closer to therapies that can restore insulin production in people with the disease, and ultimately produce a cure.”


Scientists discover mechanisms behind neonatal diabetes



Provided by
The Mount Sinai Hospital

Citation:
Researchers discover new drug cocktail that increases human beta cell proliferation at rapid rates (2018, December 20)
retrieved 11 February 2019
from https://medicalxpress.com/news/2018-12-drug-cocktail-human-beta-cell.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Tagged with:

About author

Related Articles