Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Mechanical training makes synthetic hydrogels perform more like muscle

Mechanical training makes synthetic hydrogels perform more like muscle

Human skeletal muscles have a unique combination of properties that materials researchers seek for their own creations. They’re strong, soft, full of water, and resistant to fatigue. A new study by MIT researchers has found one way to give synthetic hydrogels this total package of characteristics: putting them through a vigorous workout.

In particular, the scientists mechanically trained the hydrogels by stretching them in a water bath. And just as with skeletal muscles, the reps at the “gym” paid off. The training aligned nanofibers inside the hydrogels to produce a strong, soft, and hydrated material that resists breakdown or fatigue over thousands of repetitive movements.

The polyvinyl alcohol (PVA) hydrogels trained in the experiment are well-known biomaterials that researchers use for medical implants, drug coatings, and other applications, says Xuanhe Zhao, an associate professor of mechanical engineering at MIT. “But one with these four important properties has not been designed or manufactured until now.”

In their paper, published this week in the Proceedings of the National Academy of Sciences, Zhao and his colleagues describe how the hydrogels also can be 3-D-printed into a variety of shapes that can be trained to develop the suite of muscle-like properties.

In the future, the materials might be used in implants such as “heart valves, cartilage replacements, and spinal disks, as well as in engineering applications such as soft robots,” Zhao says.

Other MIT authors on the paper include graduate student Shaoting Lin, postdoc Ji Liu, and graduate student Xunyue Liu in Zhao’s lab.

Training for strength and more

Excellent load-bearing natural tissues such as muscles and heart valves are a bioinspiration to materials researchers, but it has been very challenging to design materials that capture all their properties simultaneously, Zhao says.

For instance, one can design a hydrogel with highly aligned fibers to give it strength, but it may not be as flexible as a muscle, or it may not have the water content that makes it compatible for use in humans. “Most of the tissues in the human body contain about 70 percent water, so if we want to implant a biomaterial in the body, a higher water content is more desirable for many applications in the body,” Zhao explains.

The discovery that mechanical training could produce a muscle-like hydrogel was something of an accident, says Lin, the lead author of the PNAS study. The research team had been performing cyclic mechanical loading tests on the hydrogels, trying to find the fatigue point where the hydrogels would begin to break down. They were surprised instead to find that the cyclic training was actually strengthening the hydrogels.

“The phenomenon of strengthening in hydrogels after cyclic loading is counterintuitive to the current understanding on fatigue fracture in hydrogels, but shares the similarity with the mechanism of muscle strengthening after training,” says Lin.

Before training, the nanofibers that make up the hydrogel are randomly oriented. “During the training process, what we realized is that we were aligning the nanofibers,” says Lin, adding that the alignment is similar to what happens to a human muscle under repeated exercise. This training made the hydrogels stronger and fatigue-resistant. The combination of the four key properties appeared after about 1,000 stretching cycles, but some of the hydrogels were stretched over 30,000 cycles without breaking down. The tensile strength of the trained hydrogel, in the direction of the aligned fibers, increased by about 4.3 times over the unstretched hydrogel.

At the same time, the hydrogel demonstrated soft flexibility, and maintained a high water content of 84 percent, the researchers found.

The antifatigue factor

The scientists turned to confocal microscopy to take a closer look at the trained hydrogels, to see if they could discover the reasons behind their impressive anti-fatigue property. “We put these through thousands of cycles of load, so why doesn’t it fail?” Lin says. “What we did is make a cut perpendicular to these nanofibers and tried to propagate a crack or damage in this material.”

“We dyed the fibers under the microscope to see how they deformed as a result of the cut, [and found that] a phenomenon called crack pinning was responsible for fatigue resistance,” Ji says.

“In an amorphous hydrogel, where the polymer chains are randomly aligned, it doesn’t take too much energy for damage to spread through the gel,” Lin adds. “But in the aligned fibers of the hydrogel, a crack perpendicular to the fibers is ‘pinned’ in place and prevented from lengthening because it takes much more energy to fracture through the aligned fibers one by one.”

In fact, the trained hydrogels break a famous fatigue threshold, predicted by the Lake-Thomas theory, which proposes the energy required to fracture a single layer of amorphous polymer chains such as those that make up PVA hydrogels. The trained hydrogels are 10 to 100 times more fatigue-resistant than predicted by the theory, Zhao and his colleagues concluded.

Source:

http://news.mit.edu/2019/strong-hydrogels-biomaterials-0422

Tagged with:

About author

Related Articles