Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Breakthrough study may lead to development of new, effective drugs for epilepsy

Breakthrough study may lead to development of new, effective drugs for epilepsy

A drug commonly used to treat multiple sclerosis may, after necessary modifications, one day be used to treat patients with epilepsy, researchers in Prof. Inna Slutsky’s lab at the Sackler Faculty of Medicine and Sagol School of Neuroscience at Tel Aviv University have discovered.

This is good news for patients with Dravet syndrome, one of the most dangerous forms of childhood epilepsy, for which there is currently no effective treatment.

According to a new study published on April 29 in Neuron, Tel Aviv University researchers uncovered a piece of a puzzle that has eluded scientists for 100 years of studying homeostasis: What is the mechanism that maintains activity set points in neural circuits?

While it is well-understood that the brain functions in a narrow range of activity between status epilepticus and coma, how neural circuits maintain stable activity in a constantly changing environment has remained unknown.

“The concept of homeostasis has a long history in physiology, starting from the work of Claude Bernard in the middle of 19th century on the stability of the milieu interior. In the middle of 20th century, James Hardy proposed a model in which homeostatic mechanisms maintain physiological variables with an acceptable range around a ‘set point’ value. However, the research of neuronal homeostasis began only 25 years ago, and we still don’t understand how it works,” explains Prof. Slutsky. “What we have found is a homeostatic mechanism that acts as a sort of a thermostat of the neural circuits, which ensures the return to a set point after each event that increases or decreases brain activity.

“Our findings may serve as a basis for the development of drugs for a range of neurological and neurodegenerative diseases such as Alzheimer’s and Parkinson’s, which, like epilepsy, are characterized by instability of brain activity.”

Research for the study was conducted by TAU PhD students Boaz Styr and Daniel Zarhin from Prof. Slutsky’s team and PhD student Nir Gonen under the joint supervision of Prof. Slutsky and Prof. Eytan Ruppin of the National Institutes of Health. Prof. Slutsky and her team also collaborated with the laboratories of Prof. Tamar Geiger of TAU’s Sackler Faculty of Medicine, Dr. Moran Rubinstein of TAU’s Sackler Faculty of Medicine and Prof. Dori Derdikman of the Technion-Israel Institute of Technology.

Antonella Ruggiero, Refaela Atsmon, Neta Gazit, Gabriella Braun, Samuel Frere, Irena Vertkin, Ilana Shapira, Leore Heim and Maxim Katsenelson, all researchers in Prof. Slutsky’s lab, also participated in the study.

Epilepsy is characterized by significant changes in the brain’s metabolic activity. To characterize these metabolic changes, Gonen plugged the genetic information of epilepsy patients gleaned from published databases into a computational metabolic model developed in Prof. Ruppin’s lab to identify the genes that transform the epileptic disease metabolic state back to a healthy one.

“The leading prediction of metabolic modeling was dihydroorotate dehydrogenase (DHODH) gene, which is localized in the mitochondria, serving as the cell’s source of energy,” says Prof. Slutsky. “Our data suggest that DHODH inhibition by the drug Teriflunomide, approved for multiple sclerosis treatment due to its immunosuppressive actions in the blood, resulted in a stable inhibition of neuronal activity, without impairing compensatory mechanisms to activity-dependent perturbations.”

The computational analysis indicates that DHODH plays a major role in the metabolic condition created by the ketogenic diet — a fat- and protein-rich, carbohydrate-poor diet, which has been effective in reducing the incidence of epileptic seizures.

In a series of experiments on healthy brain cells in vitro, Styr found that Teriflunomide significantly inhibited neuronal activity irrespective of its immunosuppressive effects. He later discovered an interesting phenomenon: If you leave the drug in neural networks for several days, the inhibition becomes permanent, without any sign of expected compensation.

“This could be due to impairments of the compensatory mechanisms or changing the set point value itself,” explains Prof. Slutsky.

To test this hypothesis, Styr examined the response of neurons to perturbations that increase or decrease neural activity in the presence of Teriflunomide. He found that homeostatic mechanisms are still active under DHODH inhibition, yet are tuned to a new, lower set point. “These results highlight DHODH as a bona fide regulator of activity set point,” explains Prof. Slutsky.

Zarhin studied the effect of Teriflunomide on two mouse models of epilepsy: an acute model that causes immediate epileptic seizures and a chronic genetic model of Dravet syndrome that causes severe epilepsy in children. Because the oral Teriflunomide poorly penetrates the brain, Zarhin examined the possibility of injecting it directly into the brains of the mice. The findings were highly encouraging: Both models showed a return to normal brain activity, along with a dramatic decrease in the severity of epileptic seizures. Notably, the drug rescued calcium overload in the mitochondria, a hallmark of epilepsy and many neurodegenerative diseases. Modification of Teriflunomide and development of new DHODH inhibitors with improved blood-brain-barrier permeability is urgent for drug-resistant epilepsy patients.

“We have discovered a new mitochondrial mechanism responsible for regulating brain activity in the hippocampus, which may serve as a basis for the development of novel antiepileptic drugs by lowering dysregulated set points,” concludes Prof. Slutsky. “Drugs based on this new principle may give hope to 30 to 40 percent of epilepsy patients, who are not responding to existing therapies, including children with Dravet syndrome, about 20 percent of whom die from the disease. We are currently examining whether failure in activity set point regulation exists in Alzheimer’s disease. If so, it may provide a new conceptual way to treat memory disorders.”

Source:

https://www.aftau.org/weblog-medicine–health?&storyid4704=2450&ncs4704=3

Tagged with:

About author

Related Articles