Breaking News
October 18, 2018 - FDA Approves Talzenna (talazoparib) for gBRCAm HER2-Negative Locally Advanced or Metastatic Breast Cancer
October 18, 2018 - Many U.S. adults confused about primary care, study shows
October 18, 2018 - With philanthropic gifts, Stanford poised to make major advances in neurosciences | News Center
October 18, 2018 - Researchers discover why heart contractions are weaker in individuals with HCM
October 18, 2018 - Participation in organized sport during childhood may have long-term skeletal benefits
October 18, 2018 - Probiotic/antibiotic combination could eradicate drug-resistant bacteria
October 17, 2018 - More Socioeconomic Challenges for Hispanic Women With HIV
October 17, 2018 - 49,XXXXY syndrome – Genetics Home Reference
October 17, 2018 - Scientists uncover possible new causes of Tourette syndrome
October 17, 2018 - Girl undergoes unusual heart surgery after compassionate-use exemption | News Center
October 17, 2018 - Health Issues That Are Sometimes Mistaken for Gluten Sensitivity
October 17, 2018 - Elective induction of labor at 39 weeks may be beneficial option for women and their babies
October 17, 2018 - New smart watch algorithms can accurately monitor wearers’ sleep patterns
October 17, 2018 - Researchers demonstrate epigenetic memory transmission via sperm
October 17, 2018 - FDA, DHS announce memorandum of agreement to address cybersecurity in medical devices
October 17, 2018 - Health Tip: Know the Risks of Chicken Pox
October 17, 2018 - Immunotherapy effective against hereditary melanoma
October 17, 2018 - Researchers reveal new mechanism for how animal cells stay intact | News Center
October 17, 2018 - Alzheimer's Goes Under the Cryo-Electron Microscope
October 17, 2018 - Medicare for all? CMS chief warns program has enough problems already
October 17, 2018 - Metrohm Raman introduces Mira P handheld Raman system
October 17, 2018 - Expanding the knowledge about hippocampus to better understand cognitive deficits in MS
October 17, 2018 - Study of Nigerian breast cancer patients reveals prevalence of aggressive molecular features
October 17, 2018 - Many healthy children may have metabolic risk factors, finds study
October 17, 2018 - A new antibiotic could be a better, faster treatment for tuberculosis
October 17, 2018 - “I will not become a Robot Doctor”: A medical student vows to practice compassion
October 17, 2018 - Study findings may explain sporadic outbreaks of C. difficile infections in hospitals
October 17, 2018 - Purdue researchers develop new chemical process to find better drug ‘fits’ for patients
October 17, 2018 - Yale researchers develop way to attack RNA with small-molecule drugs
October 17, 2018 - New pragmatic study launched to understand the effectiveness of new type 2 diabetes drug
October 17, 2018 - Alnylam Announces Plan to Initiate Rolling Submission of a New Drug Application and Pursue Full Approval for Givosiran
October 17, 2018 - Nine cases of polio-like illness suspected in children in illinois
October 17, 2018 - Eisai enters into agreement with Eurofarma for development and sales of lorcaserin in 17 countries
October 17, 2018 - Patients once thought incurable can benefit from high-dose radiation therapy
October 17, 2018 - Researchers awarded grant to advance testing of experimental heroin vaccine
October 17, 2018 - Researchers examine SSRI use during pregnancy and major gestational malformations
October 17, 2018 - FDA grants Rare Pediatric Disease Designation for Immusoft’s Iduronicrin genleukocel-T
October 17, 2018 - Reliable Respiratory announces acquisition of Attleboro Area Medical Equipment
October 17, 2018 - Study reveals link between childhood abuse and higher arthritis risk in adulthood
October 17, 2018 - Research shows people over 65 are not performing enough physical activity
October 17, 2018 - FDA Approves Liletta (levonorgestrel-releasing intrauterine system) 52 mg to Prevent Pregnancy for up to Five Years
October 17, 2018 - Weight gain after smoking cessation linked to increased short-term diabetes risk
October 17, 2018 - Researchers find opportunity to control salt-sensitive hypertension without exercising
October 17, 2018 - Women not warned about cancer associated with breast implants
October 17, 2018 - Metrohm offers robust handheld Raman analyzer for Defense and Security
October 17, 2018 - Modeling Non-Numerical Data in Systems Biology
October 17, 2018 - Research aims to address health disparities in African-American men
October 17, 2018 - Human and cattle decoys trap outdoor-biting mosquitoes in malaria endemic regions
October 17, 2018 - High Circulating Prolactin Level Inversely Linked to T2DM Risk
October 17, 2018 - Study finds gene variant predisposes people to both Type 2 diabetes and low body weight
October 17, 2018 - Metrohm software products make it easy to comply with ALOCA and ALCOA+ guidelines
October 17, 2018 - Network of doctors identify the cause of 31 new conditions
October 17, 2018 - Notable improvement in brain cancer survival among younger patients but not much for elderly
October 17, 2018 - Scientists shed light on roles of transcription factors, TP63 and SOX2, in squamous cell carcinoma
October 17, 2018 - Costs of Medicare Diabetes Prevention Program may be higher than expected reimbursement
October 17, 2018 - Misuse of prescription opioids or benzodiazepines associated with suicidal thoughts
October 17, 2018 - New research seeks to address sex disparities in women’s health
October 17, 2018 - C-Section Rates Have Nearly Doubled Since 2000: Study
October 17, 2018 - Talking to Your Kids About STDs
October 17, 2018 - New classification of periodontal and peri-implant diseases and conditions
October 17, 2018 - Herbert D. Kleber, Pioneer in Addiction Treatment, Dies at 84
October 17, 2018 - Health effects of smoke-filled atmosphere
October 17, 2018 - Down syndrome may hold important clues to onset of Alzheimer’s disease
October 17, 2018 - A special report on US’ aging societies
October 17, 2018 - Birth mode may have acute effects on neurodevelopment, study suggests
October 17, 2018 - Global health innovation system fails to deliver affordable treatments to patients, says report
October 17, 2018 - Simple, inexpensive test quickly detects antibiotic-resistant ‘superbugs’
October 17, 2018 - New drugs could reduce risk of heart disease when added to statins
October 17, 2018 - Visible and valued: Stanford Medicine’s first-ever LGBTQ+ Forum
October 17, 2018 - HVP vaccination not linked with rise in teen risky sex
October 17, 2018 - Potential ‘early warning markers’ for sepsis discovered
October 17, 2018 - Who knew? Life begins (again) at 65
October 17, 2018 - Application of blood pressure guidelines ups treatment
October 17, 2018 - Stanford researchers find that small molecule may help treat enzyme deficiency
October 17, 2018 - Speed Cameras Save Money and Lives in New York City
October 17, 2018 - Men who conform to ‘the man box’ more likely to consider suicide and violence
October 17, 2018 - Researchers aim to create more authentic organoids for drug testing, transplantation
October 16, 2018 - New blood test for pediatric brain tumor patients offers safer approach than surgical biopsies
October 16, 2018 - Age-related estrogen increase may be the culprit behind inguinal hernias in men
October 16, 2018 - Skills-Based Intervention Did Not Cut Systolic BP After Stroke, TIA
Researchers report startling glaucoma protein discovery

Researchers report startling glaucoma protein discovery

image_pdfDownload PDFimage_print
The newly discovered Y-shape at the base of myocilin joins together four well-known protein shapes called olfactomedins, or propellers, in groups of four. Understanding myocilin is important to certain kinds of hereditary glaucoma. The artist of this depiction, Raquel Lieberman, is the principal investigator of the team that confirmed a Y-shaped structure, the first ever found that was encoded as such by a gene and not constructed out of protein component parts. Credit: Georgia Tech / Raquel Lieberman

A discovery in a protein associated with glaucoma was so unheard of that for over two years, researchers ran it through a gauntlet of lab tests and published a new research paper on it. The tests validated what they initially saw.

It was a Y-shape. That made it an extreme oddity significant to science, and possibly someday to medicine, too, particularly in the treatment of certain types of blindness.

“A protein like this one has never been reported before. There are extremely few Y-shapes in proteins at all,” said Raquel Lieberman, who led the study. Lieberman is a structural biologist at the Georgia Institute of Technology, and an expert on myocilin, a protein sometimes implicated in a form of hereditary glaucoma.

Glaucoma is the second most common cause of blindness globally, and hereditary glaucoma is just one category of the disease. Genetic mutations in myocilin are a major cause of hereditary glaucoma, which can strike at a particularly young age, including in childhood.

There are other shapes in proteins that look similar to the Y, but there are key differences.

“Antibodies look a little like this, but in antibodies, separate proteins that are the products different genes fit together to make a kind of Y-shape,” Lieberman said. “This Y is encoded by one single gene sequence. That makes this absolutely unique.”

In addition to being the ostensible unicorn of protein structures, it turned out to be the central binding element of myocilin. The Y ties together major components to nail down myocilin’s overall form, overturning previous conceptions about the protein’s appearance.

Although the Y hasn’t been particularly implicated in glaucoma, its existence could meaningfully alter the way researchers understand myocilin and how it works in the eye. When myocilin goes wrong, or “misfolds,” it makes fibrils that damage tissue called the trabecular meshwork that normally allows the fluid inside the eye to drain and relieve interior pressure.

“If you kill the cells that make this drainage work, it’s going to clog, and pressure inside the eye will increase,” said Lieberman, who is an associate professor in Georgia Tech’s School of Chemistry and Biochemistry. That pressure can kill parts of the retina or optic nerve, leading to irreversible partial or total blindness.

But though myocilin is common in many parts of our bodies, its normal, healthy role in the eye and, for that matter, what functions the protein has in the body at all are still a mystery.

“I think if we knew what this protein was doing in the trabecular meshwork, we would understand much more about glaucoma in general,” Lieberman said. “This research lets us know more about what myocilin is.”

Lieberman published her results on October 19, 2017, in the journal Structure. The research was funded by the National Eye Institute and the National Institute of General Medical Sciences, both at the National Institutes of Health, by the National Science Foundation, and by the U.S. Department of Energy Office of Science.

The road to blindness via glaucoma: A depiction of how blockage of fluid flow in the trabecular meshwork, located near the cornea, can lead to pressure build-up in the aqueous humor of the eye, resulting in optic nerve and retinal damage. Credit: BrightFocus Foundation

The focus of studies so far has been on a part of myocilin that is the main culprit in a form of hereditary glaucoma, a protein structure called the olfactomedin domain, which Lieberman has also studied extensively. It looks like a protein propeller with five blades that surround a hole in the center.

“When a myocilin propellor misfolds, it unravels and forms amyloid fibrils (stringy abnormal proteins) that kill cells that maintain the trabecular network,” Lieberman said. “Until now, our work led us to believe that the propellers floated around individually as independent units, and not bound together in groups.”

“All we knew before was that, in solution, those olfactomedins were just monomers. They didn’t seem to make up anything of a higher order, except when they unraveled into amyloid fibers, stuck together and blocked fluid flow,” Lieberman said.

The Y alters the picture.

It anchors the propellers in groups of four. Two propellers (olfactomedin domains) each appear to be connected to either tip of the Y’s branches probably by amino acid strings. With the Y, the overall myocilin looks four pinwheels on strings tied to a slingshot.

Adding to the new discoveries: The Y itself is sticky, like glue. It’s even annoying to handle in the lab.

“It was sticking to the plastic, sticking to the glass, sticking to the membrane, to beads,” Lieberman said. “It’s super sticky. That may serve a biological function.”

Perhaps the Y fastens the propellers to surfaces. It’s not yet known. “But we think the main function is to pair and separate out these olfactomedin domains,” Lieberman said.

A depiction of the newly discovered Y-shape (tripartite) at the center of myocilin, a protein commonly studied in hereditary glaucoma. It is a dimer of dimers and a tetramer of coiled coils and the first directly genetically produced Y shape to be discovered. Credit: Georgia Tech / Lieberman lab

Mutations in the Y aren’t significantly associated with glaucoma. “When it mutates, it misfolds, but not in a way that causes all that cell death,” Lieberman said.

But in its normal role, the Y just might promote the speed of misfolding of the propeller protein (olfactomedin domain) that’s implicated in hereditary glaucoma. When misfolded proteins come into contact with good proteins, the misfolded ones tend to make the good ones misfold, too.

“If these propeller proteins are clustered together because of the Y, and one of them misfolds, it’s going to recruit the others,” Lieberman said. “Having them tied together in groups will only magnify the contagion.”

The Y-shape, also termed tripartite, is made up of what are called “coiled coils.” They’re pairs of short protein coils, a bit like two pieces of Slinky or coiled telephone cords, and they can be stretched similarly to a Slinky and then contract back in a similar way.

Coiled coils are very common in our bodies.

“Coiled coils represent three to five percent of our genome,” Lieberman said. “They’re found in muscle contraction, in molecule transport up and down neurons. Lots of extracellular proteins (proteins that function outside of cells) also have them.”

The Y’s branches are each a pair of coiled coils, each called a dimer, and in the trunk, they come together to form a group of four coiled coils called a tetramer.


Explore further:
3D structure solved for vulnerable region of glaucoma-causing protein

More information:
Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin. Structure. DOI: dx.doi.org/10.1016/j.str.2017.09.008

Journal reference:
Structure

Provided by:
Georgia Institute of Technology

Tagged with:

About author

Related Articles