Breaking News
August 14, 2018 - Wearable devices and ‘mhealth’ technology emerge as promising tools for better health
August 14, 2018 - Phase 2 Clinical Data Published Showing Summit’s Ridinilazole Preserved Gut Microbiome of Patients with CDI
August 14, 2018 - Cardiac progenitor cells undergo a cell fate switch to build coronary arteries
August 14, 2018 - Revealed: The molecular mechanism underlying hypertrophic cardiomyopathy, or “workaholic heart”
August 14, 2018 - New technology shows potential to streamline the analysis of proteins
August 14, 2018 - Rethinking the stroke rule ‘time is brain’
August 14, 2018 - Incidence of coronary artery compression in children may be more common than previously thought
August 14, 2018 - Study helps to better understand disease caused by Alpha-1 antitrypsin deficiency
August 14, 2018 - AI platform identifies acute neurological illnesses faster than human diagnosis
August 14, 2018 - American College of Rheumatology receives grants to support development of lupus clinical trials
August 14, 2018 - New study explains why women get more migraines than men
August 14, 2018 - American Heart Association Urges Screen Time Limits for Youth
August 14, 2018 - Brief interventions during routine care reduce alcohol use among men with HIV
August 14, 2018 - New genome analysis could identify people at higher risk of common deadly diseases
August 14, 2018 - NIH grant for Mount Sinai to study use of inhaled corticosteroids for treatment of sickle cell disease
August 14, 2018 - Daicel supplies free nanodiamond samples to international researchers
August 14, 2018 - Switching anti-psychotic drugs in first-episode schizophrenia patients does not improve clinical outcomes
August 14, 2018 - Study to examine whether modulating gut bacteria can improve cardiac function in heart failure patients
August 14, 2018 - AI technology could hold key to improving health services
August 14, 2018 - One out of two children not getting enough nutrients needed for their health
August 14, 2018 - Mono-antiplatelet therapy after aortic heart valve replacements may work as well as two drugs
August 14, 2018 - Aid-in-dying patient chooses his last day
August 14, 2018 - Exercise Really Can Chase Away the Blues, to a Point
August 14, 2018 - Surgical mesh implants may cause autoimmune disorders
August 14, 2018 - Researchers develop revolutionary zebrafish model to gain more insight into bone diseases
August 14, 2018 - Researchers discover secret communication hotline between breast cancers and normal cells
August 14, 2018 - Study examines how a person adapts to visual field loss after stroke
August 14, 2018 - Researchers show how specialized nucleic acid-based nanostructures could help target cancer cells
August 14, 2018 - Reducing opioid prescriptions for one operation can also spill over to other procedures
August 14, 2018 - E-cigarettes not so safe but still better than cigarettes
August 14, 2018 - Researchers find link between common ‘harmless’ virus and cardiovascular damage
August 14, 2018 - Initiation of PIMs associated with higher risk of fracture-specific hospitalizations and mortality
August 14, 2018 - Genetically modified mosquitoes and special bed nets help tackle deadly diseases
August 14, 2018 - Advances in treating hep C lead to new option for transplant patients
August 14, 2018 - Study finds quality of doctor-patient discussions about lung cancer screening to be ‘poor’
August 14, 2018 - MSU researchers uncover the effects of aging on regenerative ability of kidneys
August 14, 2018 - Better conditioning, throwing mechanics can help reduce elbow injuries in young baseball pitchers
August 14, 2018 - Brain game doesn’t offer brain gain
August 14, 2018 - Reproductive choices facing women with disabilities require careful consideration
August 14, 2018 - Scientists pinpoint the cause of a rare childhood seizure disorder
August 14, 2018 - Lumpectomy plus radiation associated with reduced risk of breast cancer death, study finds
August 14, 2018 - UAB study shows how ion channel differentiates newborn and mature neurons in the brain
August 14, 2018 - Experts highlight key knowledge gaps that need to be addressed in Ebola vaccine research
August 14, 2018 - Discovery could lead to new drugs against infection and inflammation
August 14, 2018 - Infection Prevention Differs Between Small, Large Hospitals
August 14, 2018 - Mom still matters—In study, young adults tended to prioritize parents over friends
August 14, 2018 - Deep brain stimulation might benefit those with severe alcoholism, preliminary studies show
August 14, 2018 - Study finds increased rate of repeat pregnancies in women with intellectual and developmental disabilities
August 14, 2018 - Lighter sedation fails to reduce risk of postoperative delirium in older patients
August 13, 2018 - Asking better questions about person’s memory could improve doctors’ understanding of patients
August 13, 2018 - U.S. Trauma Doctors Push for Stricter Gun Controls
August 13, 2018 - Asthma and flu: a double whammy
August 13, 2018 - 5 Questions: Donna Zulman on engaging high-need patients in intensive outpatient programs | News Center
August 13, 2018 - Behavioral Nudges Lead to Drop in Prescriptions of Potent Antipsychotic
August 13, 2018 - Potential New Class of Drugs May Reduce Cardiovascular Risk by Targeting Gut Microbes
August 13, 2018 - How to get your kids to eat better
August 13, 2018 - The importance of hearing your patients
August 13, 2018 - Transmission of F. tularensis unlikely to happen through the food chain
August 13, 2018 - Researchers discover epigenetic mechanism underlying ischemic cardiomyopathy
August 13, 2018 - Adolescent health programs receive only a tiny share of international aid, finds research
August 13, 2018 - Fracture risk increases by 30% after gastric bypass, study shows
August 13, 2018 - Quality-improvement project to standardize feeding practices helps micro preemies gain weight
August 13, 2018 - Long-term cannabinoid exposure impairs memory, study shows
August 13, 2018 - New intervention to reduce risk of HIV in young transgender women
August 13, 2018 - Japan human trial tests iPS cell treatment for Parkinson’s
August 13, 2018 - Altered nitrogen metabolism may contribute to emergence of new cancer mutations
August 13, 2018 - Cycling provides greatest health benefits, study finds
August 13, 2018 - Scientists discover biomarker for kidney cancer
August 13, 2018 - New test predicts the risk of serious disease before symptoms appear
August 13, 2018 - Cianna Medical receives FDA 510(k) clearance to extend indication of SCOUT reflector for use in soft tissue localization
August 13, 2018 - Ground-breaking discovery offers new hope for treatment of Alzheimer’s, other neurological diseases
August 13, 2018 - Medical nutrition therapy provided by RDNs benefits patients with chronic kidney disease
August 13, 2018 - Prenatal Tdap vaccination not linked with increased risk of autism in children, study shows
August 13, 2018 - One-Third of Canadian Patients Get Hip Fx Repair Within 24 Hours
August 13, 2018 - ANA (Antinuclear Antibody) Test: MedlinePlus Lab Test Information
August 13, 2018 - Traffic jams in the brain
August 13, 2018 - NIH awards $6.5 million to establish multi-institution biomedical technology resource center
August 13, 2018 - New marker in the blood could help predict person’s risk of developing kidney cancer
August 13, 2018 - New biomarker may provide clues to create diagnostic tool for hypoglycemia-associated autonomic failure
August 13, 2018 - Oxidative Stress Hampers Blood Vessel Dilation in Men
Researchers use gold nanoshells to effectively release cancer drugs inside tumors

Researchers use gold nanoshells to effectively release cancer drugs inside tumors

image_pdfDownload PDFimage_print

Researchers investigating ways to deliver high doses of cancer-killing drugs inside tumors have shown they can use a laser and light-activated gold nanoparticles to remotely trigger the release of approved cancer drugs inside cancer cells in laboratory cultures.

The study by researchers at Rice University and Northwestern University Feinberg School of Medicine appears in this week’s online Early Edition of the Proceedings of the National Academy of Sciences. It employed gold nanoshells to deliver toxic doses of two drugs — lapatinib and docetaxel — inside breast cancer cells. The researchers showed they could use a laser to remotely trigger the particles to release the drugs after they entered the cells.

Though the tests were conducted with cell cultures in a lab, the research was designed to demonstrate clinical applicability: The nanoparticles are nontoxic, the drugs are widely used and the low-power, infrared laser can noninvasively shine through tissue and reach tumors several inches below the skin.

“In future studies, we plan to use a Trojan-horse strategy to get the drug-laden nanoshells inside tumors,” said Naomi Halas, an engineer, chemist and physicist at Rice University who invented gold nanoshells and has spent more than 15 years researching their anticancer potential. “Macrophages, a type of white blood cell that’s been shown to penetrate tumors, will carry the drug-particle complexes into tumors, and once there we use a laser to release the drugs.”

Co-author Susan Clare, a research associate professor of surgery at the Northwestern University Feinberg School of Medicine, said the PNAS study was designed to demonstrate the feasibility of the Trojan-horse approach. In addition to demonstrating that drugs could be released inside cancer cells, the study also showed that in macrophages, the drugs did not detach prior to triggering.

“Getting chemotherapeutic drugs to penetrate tumors is very challenging,” said Clare, also a Northwestern Medicine breast cancer surgeon. “Drugs tend to get pushed out of tumors rather than drawn in. To get an effective dose at the tumor, patients often have to take so much of the drug that nausea and other side effects become severe. Our hope is that the combination of macrophages and triggered drug-release will boost the effective dose of drugs within tumors so that patients can take less rather than more.”

If the approach works, Clare said, it could result in fewer side effects and potentially be used to treat many kinds of cancer. For example, one of the drugs in the study, lapatinib, is part of a broad class of chemotherapies called tyrosine kinase inhibitors that target specific proteins linked to different types of cancer. Other Federal Drug Administration-approved drugs in the class include imatinib (leukemia), gefitinib (breast, lung), erlotinib (lung, pancreatic), sunitinib (stomach, kidney) and sorafenib (liver, thyroid and kidney).

“All the tyrosine kinase inhibitors are notoriously insoluble in water,” said Amanda Goodman, a Rice alumna and lead author of the PNAS study. “As a drug class, they have poor bioavailability, which means that a relatively small proportion of the drug in each pill is actually killing cancer cells. If our method works for lapatinib and breast cancer, it may also work for the other drugs in the class.”

Halas invented nanoshells at Rice in the 1990s. About 20 times smaller than a red blood cell, they are made of a sphere of glass covered by a thin layer of gold. Nanoshells can be tuned to capture energy from specific wavelengths of light, including near-infrared (near-IR), a nonvisible wavelength that passes through most tissues in the body. Nanospectra Biosciences, a licensee of this technology, has performed several clinical trials over the past decade using nanoshells as photothermal agents that destroy tumors with infrared light.

Clare and Halas’ collaboration on nanoshell-based drug delivery began more than 10 years ago. In earlier work, they showed that a near-IR continuous-wave laser — the same kind that produces heat in the photothermal applications of nanoshells — could be used to trigger the release of drugs from nanoshells.

In the latest study, Goodman contrasted the use of continuous-wave laser triggering and triggering with a low-power pulse laser. Using each type of laser, she demonstrated the remotely triggered release of drugs from two types of nanoshell-drug conjugates. One type used a DNA linker and the drug docetaxel, and the other employed a coating of the blood protein albumin to trap and hold lapatinib. In each case, Goodman found she could trigger the release of the drug after the nanoshells were taken up inside cancer cells. She also found no measureable premature release of drugs in macrophages in either case.

Halas and Clare said they hope to begin animal tests of the technology soon and have an established mouse model that could be used for the testing.

“I’m particularly excited about the potential for lapatinib,” Clare said. “The first time I heard about Naomi’s work, I wondered if it might be the answer to delivering drugs into the anoxic (depleted of oxygen) interior of tumors where some of the most aggressive cancer cells lurk. As clinicians, we’re always looking for ways to keep cancer from coming back months or years later, and I am hopeful this can do that.”

Source:

Nanoshells could deliver more chemo with fewer side effects

Tagged with:

About author

Related Articles