Breaking News
October 19, 2018 - Trump Administration announces ‘Winning on Reducing Food Waste’ initiative
October 19, 2018 - For-profit nursing home residents more likely to experience health issues caused by substandard care
October 19, 2018 - Conceptual framework proposed to examine role of exercise in multiple sclerosis
October 19, 2018 - Near infrared spectroscopy technique for accurate evaluation of chondral injuries
October 19, 2018 - Shorter physician encounters associated with antibiotic prescribing
October 19, 2018 - In the Spotlight: Enjoying research and exploring opportunities
October 19, 2018 - Physical activity lowers cardiovascular mortality risk in frail older adults
October 19, 2018 - New imaging tool helps visualize how sound-induced vibrations travel through the ear
October 19, 2018 - Key insights into the application, production of bioactive materials
October 19, 2018 - New urea sorbent could speed up the development of wearable artificial kidney
October 19, 2018 - Intensive care patients’ muscles less able to use fats for energy
October 19, 2018 - FDA Advisory Committee Recommends Approval of Dsuvia for the Treatment of Moderate-to-Severe Acute Pain
October 19, 2018 - 48,XXXY syndrome – Genetics Home Reference
October 19, 2018 - Physical exercise improves the elimination of toxic proteins from muscles
October 19, 2018 - How a new system improved wait times for Stanford kidney transplant patients
October 19, 2018 - Nutrition has bigger positive impact on bone mass and strength than exercise
October 19, 2018 - Study finds lack of progress in media representation of nurses over last 20 years
October 19, 2018 - Many people have trouble understanding differences between OCD and OCPD
October 19, 2018 - New family planning app found to be as effective as modern methods
October 19, 2018 - Gastric Banding, Metformin Similar for Improving Glycemia
October 19, 2018 - Physiologist publishes findings on the role of the protein titin in muscle contraction
October 19, 2018 - What digital health companies need to do to succeed
October 19, 2018 - N. Carolina Sees Alarming Spike in Heart Infections Among Opioid Users
October 19, 2018 - Video monitoring of TB therapy works well in urban and rural areas
October 19, 2018 - Determining acid-neutralizing capacity for OTC antacids
October 19, 2018 - Males who spend more time taking care of kids have greater reproductive success
October 18, 2018 - Study to explore bioethics of brain organoids
October 18, 2018 - Environmental conditions may drive development of multiple sclerosis
October 18, 2018 - Genetically modifying zebrafish provides more accurate disease models
October 18, 2018 - Purdue Pharma, Eisai announce positive topline results from Phase 3 study of lemborexant
October 18, 2018 - 5 Strength-Training Mistakes to Avoid
October 18, 2018 - Immune system’s balancing act keeps bowel disease in check
October 18, 2018 - Anti-inflammatory drug effective for treating lymphedema symptoms | News Center
October 18, 2018 - Keeping Your Voice Young
October 18, 2018 - One-time universal screening recommended to tackle increase in hepatitis C
October 18, 2018 - Researchers to develop new stem cell-based strategies for treating vision disorders
October 18, 2018 - Detecting epigenetic signature may help people stay ahead of inflammatory bowel disease
October 18, 2018 - Understanding AFib: Slowing down the dancing heart
October 18, 2018 - Using NMR to Reduce Fraud
October 18, 2018 - New automated model identifies dense breast tissue in mammograms
October 18, 2018 - Mysterious polio-like illness baffles medical experts while frightening parents
October 18, 2018 - Cases of Acute Flaccid Myelitis on the rise across U.S.
October 18, 2018 - Dietary fiber reduces brain inflammation during aging
October 18, 2018 - New tool could help prioritize recovery efforts for the poorest hit by natural disasters
October 18, 2018 - Hundreds of dietary supplements shown to contain unapproved drugs
October 18, 2018 - Active Pharmaceuticals ID’d in >700 Dietary Supplements
October 18, 2018 - Cell death protein also damps inflammation
October 18, 2018 - AI pathology diagnostic tool developed using deep learning technology from Olympus
October 18, 2018 - Health Highlights: Oct. 15, 2018
October 18, 2018 - Largest study of ‘post-treatment controllers’ reveals clues about HIV remission
October 18, 2018 - Bad Blood in Silicon Valley: A conversation with John Carreyrou
October 18, 2018 - ANTRUK’s Annual Lecture sends out message on shortage of funds for antibiotic research
October 18, 2018 - NAM special publication outlines steps to ensure interoperability of health care systems
October 18, 2018 - Novel method uses just a drop of blood to monitor effect of lung cancer therapy
October 18, 2018 - New blood test could spare cancer patients from unnecessary chemotherapy
October 18, 2018 - Training young researchers to work with data volumes arising in the health sector
October 18, 2018 - New Metrohm IC method is reliable and convenient to use for zinc oxide assay
October 18, 2018 - Global AIDS, TB fight needs more money: health fund
October 18, 2018 - Understanding the forces that cause sports concussions
October 18, 2018 - Research points to new target for treating periodontitis
October 18, 2018 - New tool improves assessment of postpartum depression symptoms
October 18, 2018 - From Biopsy to Diagnosis
October 18, 2018 - Sexual harassment and assault linked to worse physical/mental health among midlife women
October 18, 2018 - Stumped by medical school? A Q&A with a learning specialist
October 18, 2018 - Report predicts life expectancy in 2040, Spain comes out on top
October 18, 2018 - Self-lubricating condoms may help raise condom usage
October 18, 2018 - Targeting immune checkpoints in microglia could reduce out-of-control neuroinflammation
October 18, 2018 - Study finds changes in antiepileptic drug metabolism during different trimesters of pregnancy
October 18, 2018 - Autonomic nervous system directly controls stem cell proliferation, study shows
October 18, 2018 - FDA Approves Talzenna (talazoparib) for gBRCAm HER2-Negative Locally Advanced or Metastatic Breast Cancer
October 18, 2018 - Sleeping Beauty technique helps identify genes responsible for NAFLD-associated liver cancer
October 18, 2018 - Many U.S. adults confused about primary care, study shows
October 18, 2018 - UC researcher focuses on light-mediated therapies to target breast cancer
October 18, 2018 - With philanthropic gifts, Stanford poised to make major advances in neurosciences | News Center
October 18, 2018 - Mice study shows antibiotics are not always necessary to cure sepsis
October 18, 2018 - Researchers discover why heart contractions are weaker in individuals with HCM
October 18, 2018 - Participation in organized sport during childhood may have long-term skeletal benefits
October 18, 2018 - Probiotic/antibiotic combination could eradicate drug-resistant bacteria
October 17, 2018 - More Socioeconomic Challenges for Hispanic Women With HIV
October 17, 2018 - 49,XXXXY syndrome – Genetics Home Reference
Identifying the mechanism for a new class of antiviral drugs could hasten their approval

Identifying the mechanism for a new class of antiviral drugs could hasten their approval

image_pdfDownload PDFimage_print
The mechanism of a new class of antiviral drug. The RNA polymerase enzyme (yellow) replicates the virus genome by incorporating one nucleotide (black) at a time. Nucleotide analogues (red) are designed as antiviral drugs that can disrupt the replication process. The antiviral drugs work by (1) incorporating mutations, (2) stopping the replication process, or (3) a newly discovered mechanism in which the RNA polymerase enzyme pauses and then backtracks. Credit: Penn State

New research shows that a new class of antiviral drugs works by causing the virus’ replication machinery to pause and backtrack, preventing the virus from efficiently replicating. This discovery, made possible by a high-throughput experimental technique called “magnetic tweezers,” could speed the development and approval of related antiviral drugs. A paper describing the research by an international collaboration of scientists from Penn State University, Delft University of Technology in the Netherlands, Friedrich-Alexander University in Germany, and the University of Minnesota, appears October 24, 2017 in the journal Cell Reports.

“Viruses are a massive threat to global public health,” said Craig Cameron, professor and holder of the Eberly Family Chair in Biochemistry and Molecular Biology at Penn State and an author of the paper. “Developing broad-spectrum antiviral drugs—ones that are effective against many different viruses—is vital to our ability to prevent or respond to outbreaks. We were able to demonstrate the mechanism of a newly developed class of antiviral drugs that are potentially broad spectrum.”

Essentially all viruses, whose genomes are composed of RNA rather than DNA, use an enzyme called RNA-dependent RNA polymerase to express genes and replicate their genome in order to make new copies of themselves. The polymerase enzyme is therefore an attractive target for developing broad-spectrum antivirals.

“In order to make more viruses, the RNA polymerase enzyme replicates the virus genome by incorporating nucleotides—the building blocks of RNA or DNA, which are made up of a base and a sugar—one at a time,” said Jamie J. Arnold, an associate research professor at Penn State and another author of the paper. “For many antiviral drugs, alternative versions of these building blocks are designed such that when they are incorporated during replication, they somehow disrupt the process. To understand the disruption mechanism, we used magnetic tweezers that allowed us to monitor the progression of hundreds of individual RNA polymerase enzymes during the replication process in the presence of antiviral drugs.”

Schematic of the ‘magnetic tweezers’ used to assay the activity of a virus RNA polymerase (PV RdRp) enzyme in the presence of antiviral drugs. Researchers can monitor hundreds of individual enzymes as they replicate a strand of RNA that is attached to a magnetic bead allowing them to gather data on the mechanism of action of antiviral drugs. Credit: Penn State

The magnetic tweezers work by tethering one end of hundreds of individual strands of RNA to a surface and attaching a magnetic bead to the other end. A magnet then holds the strands vertically while the researchers monitor the beads under a microscope. As the RNA polymerase builds new RNA, the length of the strand changes, moving the bead up or down. Because they can monitor hundreds of these processes simultaneously, the researchers are able to build datasets and develop sound statistical backing for their observations.

“We were particularly interested in an antiviral called T-1106,” said Cameron. “It is related to Favipiravir, which was recently approved in Japan for use in the treatment of influenza, but the mechanism was unknown. We were able to show that these antivirals—a new class that alters the base of the RNA building block, rather than the sugar—work in a new way. Unlike other known antivirals that either incorporate mutations into the replication process or stop it completely, this new class works by causing the RNA polymerase enzyme to pause and backtrack. With this understanding, we can begin to fine tune the design of these antivirals and speed up the process of getting them approved.”


Explore further:
Herpesvirus study in mice leads to discovery of potential broad-spectrum antiviral

More information:
Cell Reports (2017). DOI: 10.1016/j.celrep.2017.10.005

Journal reference:
Cell Reports

Provided by:
Pennsylvania State University

Tagged with:

About author

Related Articles