Breaking News
January 17, 2018 - Lactation May Lower T2D Risk in Younger Women
January 17, 2018 - New Atopic Dermatitis Yardstick provides practical guidance and management insights
January 17, 2018 - New biodegradable pressure sensor could help monitor serious health conditions
January 17, 2018 - HSS orders Sectra’s 3D pre-operative planning solution for improving patient outcomes
January 17, 2018 - Study identifies six new genes regions associated with diabetes
January 17, 2018 - Women do not receive timely diagnosis for heart disease
January 17, 2018 - AbbVie’s Upadacitinib Shows Positive Results as Monotherapy in Phase 3 Rheumatoid Arthritis Study, Meeting All Primary and Key Secondary Endpoints
January 17, 2018 - Should President Trump’s Physical Include a Cognitive Screen?
January 17, 2018 - Could gene therapy someday eliminate HIV?
January 17, 2018 - Researchers identify new anti-inflammatory drug target
January 17, 2018 - Loxo Oncology Initiates Rolling Submission of New Drug Application to U.S. Food and Drug Administration for Larotrectinib for the Treatment of TRK Fusion Cancers
January 17, 2018 - Trunk Imaging Tied to Higher Nephrectomy Risk
January 17, 2018 - Campaigners incensed at failings in Africa AIDS war
January 17, 2018 - Research opens door to development of new treatment for type 2 diabetes
January 17, 2018 - Bariatric surgery extends lifespan in obese patients, shows study
January 17, 2018 - Bristol-Myers Squibb Receives FDA Approval for Opdivo (nivolumab) as Adjuvant Therapy in Patients with Completely Resected Melanoma with Lymph Node Involvement or Metastatic Disease
January 17, 2018 - Ewww Moments in the ER: That’s Improbable!
January 17, 2018 - Methods from optogenetics, machine learning should help improve treatment options for stroke patients
January 17, 2018 - Booze may help or harm the heart, but income matters
January 17, 2018 - Three-dimensional organization of genome plays key role in gene expression, cell fate
January 17, 2018 - Scientists identify six new gene regions that may help treat type 1 diabetes
January 17, 2018 - Top nutrients needed to boost mood and energy levels on Blue Monday
January 17, 2018 - Scientists develop unique technique to map elasticity of cell components
January 17, 2018 - Obesity surgery reduces the risk of death by half finds new study
January 17, 2018 - Raw Meat Not the Safest Choice for Your Dog or for You
January 17, 2018 - Men who lack HSD17B4 gene may be more susceptible to treatment-resistant prostate cancer
January 17, 2018 - High-Dose Aspirin Preferred for Kawasaki’s
January 17, 2018 - Study suggests risk management approach to combat EMS fatigue
January 17, 2018 - A new therapy against obesity
January 17, 2018 - Doctors warn against holding your nose and closing your mouth to contain a sneeze
January 17, 2018 - Measles outbreak alarms public health officials
January 17, 2018 - FDA Slaps Class Warning on Gadolinium Contrast Agents
January 17, 2018 - Distinct human mutations can alter the effect of medicine
January 17, 2018 - ASIT biotech’s new article presents clinical results of gp
January 17, 2018 - Alternative tobacco use by adolescents associated with greater odds of future cigarette smoking
January 17, 2018 - A High-Salt Diet Produces Dementia In Mice
January 17, 2018 - Scientists provide insights into crucial interaction for DNA repair
January 17, 2018 - Sanofi and Regeneron Announce Positive Topline Pivotal Results for PD-1 Antibody Cemiplimab in Advanced Cutaneous Squamous Cell Carcinoma
January 17, 2018 - Morning Break: Pfizer Kills AD/PD Pipeline; Trump Affirms His Mental Health; Humira Pricing Strategy
January 17, 2018 - Researchers see gene influencing performance of sleep-deprived people
January 17, 2018 - Fast food triggers the immune system making it hyperactive
January 17, 2018 - Scientists find increased risk of HIV outbreaks in Ukraine due to war-related migration
January 17, 2018 - New universal flu vaccine moves to clinical trial phase and could be a reality soon
January 17, 2018 - Cocaine de-addiction breakthrough shows promise
January 17, 2018 - FDA Accepts New Drug Application for Seysara (sarecycline) for the Treatment of Moderate to Severe Acne
January 17, 2018 - Robotic Telestenting; BP Cuff Smartwatch; Medicare Bundled Care
January 17, 2018 - New cellular approach found to control progression of chronic kidney disease
January 17, 2018 - Lamprey genes provide clues to repair spinal cord damage, finds study
January 17, 2018 - Tissue-based soft robot could lead to advances in bio-inspired robotics
January 17, 2018 - Mostly the healthy and wealthy Americans use mobile phone apps to track sleep habits
January 17, 2018 - FDA Alert: Varubi (rolapitant) Injectable Emulsion: Health Care Provider Letter
January 16, 2018 - NeuroBreak: Rough Days for Neuroscience Research; Another Migraine Drug Advances
January 16, 2018 - The ‘greatest pandemic in history’ was 100 years ago – but many of us still get the basic facts wrong
January 16, 2018 - Serena Williams Shares Childbirth Ordeal
January 16, 2018 - The Artificial Brain as Doctor
January 16, 2018 - Type 2 diabetes has hepatic origins
January 16, 2018 - Expert discusses how to identify, support individuals with drug or alcohol addiction in workplace
January 16, 2018 - Starting menstruation early increases risk of cardiovascular disease and stroke in later life
January 16, 2018 - CapsoVision receives CE Mark approval for use of CapsoCam Plus System in pediatric patients
January 16, 2018 - Researchers develop new dynamic statistical model to follow gene expressions over time
January 16, 2018 - Alzheimer’s ‘looks like me, it looks like you’
January 16, 2018 - By the Numbers: Physicians’ Economic Impact
January 16, 2018 - Sound Health | NIH News in Health
January 16, 2018 - Modifying baby formula doesn’t prevent type 1 diabetes in children
January 16, 2018 - Energy drinks dangerous for kids
January 16, 2018 - When you need a breast screening, should you get a 3-D mammogram?
January 16, 2018 - Johns Hopkins gets approval to perform HIV positive to HIV positive living donor kidney transplants
January 16, 2018 - The Salk Institute and Indivumed collaborate for cutting-edge cancer research
January 16, 2018 - Study reveals negative long-term effects of heavy cannabis use on brain function and behavior
January 16, 2018 - Many gym-goers injure themselves by pushing harder to be better than friends
January 16, 2018 - Risankizumab Meets All Primary Endpoints Reporting Positive Results in Fourth Pivotal Phase 3 Psoriasis Study
January 16, 2018 - Federal Junk Food Tax Feasible, Study Says
January 16, 2018 - Do girls have stronger teeth than boys?
January 16, 2018 - New high-sensitivity blood tests could aid faster diagnosis and treatment for heart attack
January 16, 2018 - How fatal mitochondrial diseases may strike offspring of families with no history of the conditions
January 16, 2018 - TherapeuticsMD Announces FDA Acceptance of New Drug Application and Prescription Drug User Fee Act (PDUFA) Date for TX-004HR
January 16, 2018 - Morning Break: Food Pharmacies; Obamacare Sign-ups Dip; Top Pot Studies
January 16, 2018 - Blood pressure declines 14 to 18 years before death
January 16, 2018 - ViLim Ball technology helps reduce uncontrollable shaking hands
January 16, 2018 - Researchers use immune-mimicking biomaterial scaffolds to fast track T cell therapies
Using AFM to study cancer cells

Using AFM to study cancer cells

image_pdfDownload PDFimage_print

An interview with Prof. Hermann Schillers, Universität Münster conducted by April Cashin-Garbutt, MA (Cantab)

Can you please give a brief introduction to your research?

I run a core facility for AFM techniques, biological medical applications. My research is focussed on in the interaction of platelets and cancer cells.

Platelets support cancer cells in nearly every step of forming metastases, starting with the escape of immune surveillance, followed by the cancer cell arresting to the vessel wall and also in extravasation.

Our idea is that if we could prevent the interaction of platelets and circulating cancer cells, we may find something to block the formation of metastases, which might fight cancer.

How do you use AFM imaging and force-spectroscopy-based modes to study the structure and mechanical properties of cancer cells?

In platelet−cancer cell interaction, I use single cell force spectroscopy to quantify the interaction of platelets and cancer cells and to quantify the effect of drugs that prevent this interaction.

With this technique, we got real numbers of the forces between platelets and cancer cells for the first time. Microfluidic experiments allow to quantify the number of platelets on cancer cells, but we can’t quantify the strength of that interaction. With single cell force spectroscopy we got picoNewtons (pN) and femtoJoules (fJ). And this is necessary when you want to know which drug prevents this interaction at which concentration.

Another point is that we want to see what happens when a platelet binds to a cancer cell. The actual understanding of the situation is that platelets form a kind of ´invisible´ cloak around the circulating cancer cell, but we never observed this.

When we scan platelet cancer cell aggregates, we see that platelets on top of cancer cells vanish within 30 minutes. Using Resolve’s fastTapping mode, we could observe this uptake of platelets into cancer cells. We proved this with fluorescent techniques such as cell sorting and confocal microscopy and we clearly saw that there was an uptake but not a cloak formation.

How much is currently known about the way in which cancer cells “hijack” the services of platelets?

The widespreaded view is the cloak formation of platelets around circulating cancer cells. This layer of platelets protects the cancer cell against the immune system and, in the next step, facilitate the arrest of the cancer cell-platelet aggregate to the endothelial wall to start the extravasation.

Since we never observed this cloak formation but always observe the uptake of platelets by cancer cells, we think it is more likely that the cancer cell uses platelet proteins, platelet-specific adhesion molecules, to adhere to the vessel wall and also to escape immune surveillance.

In addition, it is known that platelets, as well as platelet-derived microparticles, contain mRNA and this changes the proteome of the cancer cell. Therefore, it could be both ways: the use of platelet proteins directly after the platelet uptake, followed by use of the platelet mRNA to produce platelet proteins to escape immune surveillance and adhere to the vessel wall.

In what way can AFM further our understanding?

We look for the first step of platelet cancer cell interaction, but there are several further steps. What I now try to do is to use PeakForce QNM to see a pattern of biomechanical changes of the cancer cell after interaction with platelets.

So far we found a kind of biomechanical footprints at the position where the cancer cell gobbles up a platelet. There is a change in elasticity and viscosity in the cancer cell membrane that may give us some hints about the mechanism by which the cancer cell incorporates the platelet. We know from experiments that this is in a dynamin-dependent process but want to know more about this.

The next step is that we want to know what change the cancer cell undergoes after uptake of platelets. We are again using single cell force spectroscopy. We incubate cancer cells with platelets and then perform single cell force spectroscopy on activated endothelium.

We are looking for the arrest of circulating cancer cells on endothelium and quantify the adhesion force. We saw that when cancer cells made contact with platelets, they became much stickier to the activated endothelium, compared to untreated cancer cells. That is one of the projects we are currently involved in.

We also look for the interaction site of these platelet-incubated cancer cells on activated endothelium. I don’t think that the platelet-incubated cancer cell could adhere everywhere on activated endothelium. There must be a specific predilection site.

We want to figure out where it adheres to. Is this cell junction or the cell body of endothelial cells or does the endothelial cell need special mechanical characteristics to form a metastatic nice with a platelet-incubated cancer cells and then proceed to extravasation?

What is the biggest impact that AFM has made to the biological and nanomedicine research fields?

We are able to look at living cells and even at subcellular structures. It is still a technique where we are limited to the surface, but when we apply a little bit force, we can see beneath the surface and observe cytoskeletal dynamics, for instance.

Twenty years ago, there were images of a couple of cells, rather blurry than resolved, and then it started to become more and more a high resolution imaging technique for living cells. However, pure imaging of cells runs out of steam after a while mechanical characterization became the focus and there is still a focus on the measurement of live cell’s elasticity, viscoelasticity and the changes in the elastic modulus. Cell dynamics is something we could follow with AFM and it includes biomechanics as well as biochemistry.And  biomechanics is as important as biochemistry.

The field of biochemistry is 30 or 40 years old, with very detailed knowledge about the biochemistry of cells, but biomechanics is rather new. In 2007, Michael Sheets and Viola Vogel published a review where they showed that mechanics influenced biochemistry and vice versa. An example: When you apply force to a protein it might open up cryptic binding sides or destroy binding sites, then the intracellular signalling pathway and the cells behaviour goes in a different direction. Today we know that biomechanics influences biochemistry and biochemistry influences biomechanics.

How has Bruker technology helped or advanced AFM in biological research?

There’s the tapping mode, which was invented by Bruker many years ago allowing to get information about the cell − curvature, cell heights, providing morphological data.

The latest great success was PeakForce QNM where we get several data sets of live cells` morphology and biomechanical parameters, such as elasticity, dissipation, adhesion and deformation in one scan process.  

And this at a rather good speed, especially on the Resolve system, which enabled us to observe dynamical changes of a layer of cells, single cells and even subcellular structures like cytoskeletal rearangements with a time resolution in the range of a minute and below. So perhaps you may not have significant changes in the topographic channel, but you did see a lot in the data channels for adhesion, dissipation or elasticity. This is a real improvement.

What is the importance of meetings, like the AFM BioMed Conference, to you and the AFM research community?

One might say that today you could use Skype, e-mail or a phone to get in contact with the people, but that’s not the same – it is completely different. When we met for the conference, we stayed here together for a couple of days.

A well-organized coffee break is the most important thing at a meeting because people come together to talk about things they don’t come up with when they are on stage giving a talk. So the time outside the lecture hall is very important, people discussing so many things and longlasting contacts start here.

Many, many cooperations start from meetings like this. No Skype conference will ever substitute a conference where people physically come together to talk, so it is absolutely necessary.

What direction do you see, or would like to see, AFM going in the next five years? (What do you see as the next big thing for AFM?)

One of the things AFM needs is speed. More speed would mean that you could follow the dynamics of cells at a better time resolution. Another point is that since AFM was invented we have used the old optical lever system and I think it is now time for a new system that moves away from one cantilever, or one indenter, to a multi-probe array AFM.

Several ideas are being discussed and micro- and nanofabrication techniques have reached a high level of development. So why should the leading providers of AFMs not try to improve AFM techniques by a more fundamental change?

Such a multi-probe array would be interesting not only in terms of speed and resolution, but also in terms of measuring biomechanical characteristics. The way we do it today is we indent the cell in this position, that position, and so on.

But we know that a cell reacts on each indentation which causes calcium spikes and cytoskeletal rearrangement; what we get in the last indentation is different from what we get in the first indentation. Therefore, multi-probe array system would be very useful for every AFM user and especially in the field of Bio-AFM application.

Another thing that was mentioned during the talks at AFM BioMed was chemical characterization. We are still in a situation where we are blind-folded when we touch our samples. We may feel something, but we can’t see what it is. There are attempts using IR and raman spectroscopy, for instance; they are at a stage where researchers try things but it’s actually difficult to handle and have several limitations. However, something like this would help in getting more information beside topographical and mechanical information.

For instance, it would be a real large improvement when we could do a scan and find out that something is stiff showing a high protein content and that the soft area could be related to lipids. Also recording the membrane potential simultaneously with topography, mechanics and chemical characterization would be a very useful improvement for all life cell research.

Where can readers find more information?

About Prof. Hermann Schillers

Prof. Dr. Hermann Schillers is Group leader at the Institute of Physiology II, University of Münster. He holds a Doctorate in Chemistry and a Habilitation from the University of Münster.

In 2003 he held a patent for a method for detecting diseases that are associated with defects of cystic fibrosis transmembrane conductance regulator (CFTR) protein.

Tagged with:

About author

Related Articles