Breaking News
December 17, 2017 - Researchers explore how toxic protein clusters linked to Parkinson’s disrupt brain cells
December 17, 2017 - Autism traits linked to risk of depression, suicidal thoughts in people with psychosis
December 17, 2017 - Jimmie Holland’s Long Medical Odyssey
December 17, 2017 - Controversial MS Treatment Found to Be Ineffective: MedlinePlus Health News
December 17, 2017 - Time of day affects test results for asthma, researchers find
December 17, 2017 - Scientists create atomic scale map that tracks how brain signals connect to neurons
December 17, 2017 - Tips for buying safe toys during the holidays – and year-round
December 17, 2017 - CardioBrief: Will Entresto Sell Big After All?
December 17, 2017 - Water baths as good as bleach baths for treating eczema
December 17, 2017 - Valley fever cases see sharp increase in November, say UVA experts
December 17, 2017 - New Insight on Killer Fungus Threatening Bats
December 17, 2017 - Early Atherosclerosis Defies ‘Normal’ Cholesterol
December 17, 2017 - CRF1 stress receptor is regulator of mast cell activity during stress
December 17, 2017 - CREST Failed to Dampen Enthusiasm for Carotid Stenting in Elderly
December 17, 2017 - Rising levels of HIV drug resistance
December 17, 2017 - Aging brain’s failure to coordinate deep-sleep brainwaves makes older adults forget
December 17, 2017 - Rural Workers Have Higher Exposures to COPD-Causing Pollutants
December 17, 2017 - Don’t Delay Hip Fracture Surgery. Here’s Why: MedlinePlus Health News
December 17, 2017 - NIH launches HIV prevention trial of long-acting injectable medication in women
December 17, 2017 - Op-Ed: Get Ready for a Tsunami of ECGs
December 17, 2017 - Observation care may save more than thought
December 17, 2017 - Scientists explore effectiveness of action video games to combat dyslexia
December 17, 2017 - Teens Acting Badly? Smog Could Be to Blame
December 17, 2017 - FDA Says ‘Yes’ to Short-Acting Insulin Admelog
December 17, 2017 - Vaping popular among teens; opioid misuse at historic lows
December 17, 2017 - Lower Urinary Symptoms Occur in Almost All Patients with SSc
December 17, 2017 - Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)
December 16, 2017 - Butler Hospital launches international Alzheimer’s disease prevention study
December 16, 2017 - iMedicalApps: Virtual Reality Boosts Self-Confidence for Med Students
December 16, 2017 - Researchers validate five new genes responsible for Amyotrophic Lateral Sclerosis
December 16, 2017 - New genetic analysis of candidiasis reveals surprising fungal sex secrets
December 16, 2017 - New high precision machine-learning model could help accelerate drug discovery
December 16, 2017 - Groundbreaking gene therapy trial brings cure for hemophilia closer
December 16, 2017 - Racial Differences Seen in IgG4 Disease
December 16, 2017 - Treacher Collins Syndrome
December 16, 2017 - New approach to tracking how deadly ‘superbugs’ travel could slow their spread
December 16, 2017 - Muscle paralysis may promote breakdown of bones
December 16, 2017 - WSU scientists create injectable dye to track progression of diseases
December 16, 2017 - Kaiser Permanente delivers clot-busting drugs to stroke patients more than twice as fast as national rates
December 16, 2017 - Some Great Holiday Foods for Weight Loss
December 16, 2017 - Shared Decision-Making Strategies for Lung Ca Screening Get High Marks
December 16, 2017 - Lactic acid bacteria can protect against Influenza A virus, study finds
December 16, 2017 - Cancer immunotherapy’s effectiveness may depend on patient’s genetic makeup
December 16, 2017 - Researchers explore patient-doctor conversations, best practices linked to opioid tapering
December 16, 2017 - ‘Virtual child’ to help professionals learn key techniques to treat children with autism
December 16, 2017 - IU scientists discover way to make drug treatment more successful against malaria
December 16, 2017 - Prostate cancer researchers find significant disparities between two liquid biopsy providers
December 16, 2017 - ED-Diagnosed Lung Ca Patients Worse Off: Clin Onc News Report
December 16, 2017 - Calcium in Urine Test: MedlinePlus Lab Test Information
December 16, 2017 - Pregnancy-related conditions taken together leave moms—and dads—at risk
December 16, 2017 - Research uncovers mechanism implicated in defective function of tumor-associated dendritic cells
December 16, 2017 - OncoBreak: Stubborn Racial Disparities; Paid Medical Leave & Chemo; DIY Gene Tests
December 16, 2017 - Critical link between obesity and diabetes has been identified
December 16, 2017 - Transfusion dependence reduces access to high-quality end-of-life care for leukemia patients
December 16, 2017 - Porvair and Suzhou Tianlong Bio to develop epigenetic analysis technologies
December 16, 2017 - FDA Approves Ixifi (infliximab-qbtx), a Biosimilar to Remicade
December 16, 2017 - Morning Break: Trump to Get Check-Up; Cancerous Transplant; Death Knell for MIPS?
December 16, 2017 - First transcatheter implant for diastolic heart failure successful
December 16, 2017 - ‘Sushi-like’ nanodiscs provide structural snapshots of misfolding proteins
December 16, 2017 - Inherited gene variation may be to blame for poor survival of patients with early-onset breast cancer
December 16, 2017 - Sign-up deadline is Friday, but some people may get extra time
December 16, 2017 - Higher Booze Taxes Might Pay Off for Public Health
December 16, 2017 - Regular Activity in Midlife Spares Joints in Women
December 16, 2017 - Rain May Not Cause Achy Joints After All: MedlinePlus Health News
December 16, 2017 - MedDiet adherence doesn’t affect acute heart failure mortality
December 16, 2017 - HKBU experts develop new generation of smart anti-cancer drug molecules
December 16, 2017 - Chronic Kidney Disease Audit finds wide variations in coding of CKD patients in primary care
December 16, 2017 - Scientists use nanoparticles to fight Mucoviscidosis
December 16, 2017 - Increasing physical activity decreases risk of death from lymphoma
December 16, 2017 - Fear compromises the health, well-being of immigrant families, survey finds
December 16, 2017 - Rejected antibiotic candidate could be worth a second look, research finds
December 16, 2017 - Is Nation on the Right Track to Combat Opioid Crisis?
December 16, 2017 - Arthritis No Longer Just a Disease of the Old: MedlinePlus Health News
December 16, 2017 - Study reveals biology behind why muscle stem cells respond differently to aging or injury
December 16, 2017 - Family members without inherited mutation have increased risk of melanoma
December 16, 2017 - Researchers reveal previously unknown mechanism that inhibits cells’ ability to develop into tumors
December 16, 2017 - Studies highlight potential of fMRI applications to detect, treat epilepsy in children
December 16, 2017 - Active surveillance proposed as first-line approach to manage patients with low-risk PMC of the thyroid
December 16, 2017 - Patients’ life values affect their attendance at medical treatment for pelvic-floor dysfunction
December 16, 2017 - Experts consider hazards of antibiotic resistances to be high
New technique may reveal clues about role of centromeres in Down syndrome, other birth defects

New technique may reveal clues about role of centromeres in Down syndrome, other birth defects

image_pdfDownload PDFimage_print

Some scientists call it the “final frontier” of our DNA — even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

It’s called the centromere, and it plays a crucial role in the everyday cell division that keeps us healthy. Which also makes it a key suspect in birth defects, cancers and other diseases that arise from cell division problems.

Now, a new technique may force this mysterious stretch of DNA to give up its secrets at last.

Already, the first test of the approach has yielded clues about the role of centromeres in Down syndrome, which arises when a child inherits an extra copy of chromosome 21.

Soon, the technique’s developers at the University of Michigan Medical School hope it will accelerate research on other conditions that may have roots in centromere-related problems.

“These PCR assays give us the opportunity to understand the dynamics of centromeres, and how these sequences expand or contract during evolution and/or disease processes,” says Rafael Contreras-Galindo, Ph.D., lead author of the new paper and an assistant professor of internal medicine. “We can now understand at which centromeres in specific chromosomes key centromere proteins sit, and form the kinetochores that are vital to cell division. With these studies, we can begin to understand how centromere DNA instability could affect centromere function, as we appear to see in Down syndrome”.

Speeding up genetic analysis

In a new paper in Genome Research, the U-M researchers describe the technique they developed, and its first test. In essence, it changes the analysis of centromere DNA from a long, labor-intensive task to a fast and relatively easy one that can accelerate research on centromere-related diseases.

Their approach is based on the discovery of unique DNA repetition patterns found in the centromere of nearly every chromosome. Their new catalog of these chromosome-specific patterns makes it possible to use a DNA-sequencing tool called polymerase chain reaction, or PCR.

The massive repeated sections of DNA that make up most of every centromere have made the structures hard to sequence and study in the past, because the same long stretches appear on every chromosome.

So, most centromere researchers have studied the proteins and other molecules that interact with centromeres – factors referred to as epigenetics — rather than the DNA itself.

But the new approach harnesses small chromosome-specific variations and uses them as PCR primers. This makes it fast and easy for researchers to recognize the centromeres of almost every chromosome in a cell, and tell them apart, in just half an hour.

“Centromeres are important for cell division, but poorly understood from a genetic standpoint, because the DNA sequences in them are very repetitive,” says David Markovitz, M.D., senior author of the new paper and a professor of internal medicine. “With this technique, we and others can study their genetics, and epigenetics, in a real-time, user-friendly way.”

U-M has applied for a patent on the approach and is currently looking for commercialization partners to help bring the technology to market.

Exploring the link to Down syndrome

In the new paper, Contreras-Galindo, Markovitz, active emeritus U-M professor Mark Kaplan, M.D., and a team of collaborators report results from their comparison of centromeres from individuals with and without Down syndrome.

They show a strong link between the condition and instabilities found on chromosome 21 – both in the centromere and in the stretches of DNA that flank it, called pericentromeres.

Unstable centromeres and pericentromeres could help explain why people with Down syndrome inherit an extra copy of that chromosome, although much work remains to test this hypothesis.

After all, as every biology student learns, cells that are preparing to divide rely on centromeres to help them divide up the double amount of DNA they’ve produced, and distribute it to the two “daughter” cells they will produce. To do this, the cells grow long skinny structures called spindles that look like spider legs, and attach to one centromere of each chromosome, which is made up of two identical stretches of DNA.

The spindles retract as the cell divides, plucking the two halves of a chromosome apart. If the plucking doesn’t happen correctly because of a centromere-related issue, that could cause both halves of the chromosome to travel together into the “daughter” cell.

In the new study, people with Down syndrome also differed from those without the condition in their levels of a key protein that binds to centromere DNA, and helps form the structure that the spindles attach to. People with Down syndrome had much more of that one protein attached to their centromeres, compared to those without the condition.

Serendipity and hard work

The U-M researchers didn’t set out to study centromeres. They originally wanted to learn more about hidden virus DNA that has become embedded in our genome over centuries.

These human endogenous retroviruses, or HERVs, as they’re called, have given us stretches of DNA that get copied and handed down from generation to generation.

The team had previously found unknown HERV RNA in the blood of patients with HIV/AIDS. Over time, they discovered HERV DNA near the edges of the centromere region of certain chromosomes. They dubbed the viruses K111 and K222.

The HERV sequences weren’t in the Human Genome Project database because they’re in the centromere region. But the researchers and their colleagues showed that the same HERVs could also be found in other higher primates, including chimpanzees and Neanderthals.

But while these human relatives have a few copies, we humans have thousands of copies of the HERV DNA near our centromeres – and on many of our chromosomes. K111, for instance, could be found on 15 chromosomes’ centromeres, slightly altered in each one. This suggests that centromeres over time have had genetic material “cross-over” to other chromosomes.

Using the HERV sequences as an anchor point to study centromere DNA, the team used PCR of so-called alpha-repeat sequences to more fully analyze nearly all human centromeres.

The new paper includes their results from 23 of the 24 different human chromosomes – including the X and Y. Only chromosome 19 has so far resisted the development of a diagnostic PCR assay, as the researchers search for sequences unique to it.

Source:

http://labblog.uofmhealth.org/lab-report/new-approach-to-studying-centromeres-may-reveal-link-to-down-syndrome-and-more

Tagged with:

About author

Related Articles