Breaking News
February 19, 2018 - Russian researchers develop new multi-layered biodegradable scaffolds
February 19, 2018 - Are ‘Vaccine Skeptics’ Responsible for Flu Deaths?
February 19, 2018 - Hidden genetic effects behind immune diseases may be missed, study suggests
February 19, 2018 - Study sheds light on biology that guides behavior across different stages of life
February 19, 2018 - Morning Break: Transgender Breast Feeding; Brazilian ‘Pro-Vaxxers’; Post-Stroke Exercise
February 19, 2018 - Meningitis vaccination strategy in Africa found to be effective, economical
February 19, 2018 - Researchers uncover how excess calcium may influence development of Parkinson’s disease
February 19, 2018 - Psoriasis drug also effective at reducing aortic inflammation
February 19, 2018 - Excess emissions can make serious contributions to air pollution, study shows
February 19, 2018 - Diabetes Drugs Differ on HF; School-Based Obesity Program Flop; Plaque Type in ACS
February 19, 2018 - Surgical infections linked to drug-resistant bugs, study suggests
February 19, 2018 - Poor awareness may hinder a child’s early dental care
February 19, 2018 - Researchers uncover Ras protein’s role in uncontrolled cancer growth
February 19, 2018 - FDA Approves Apalutamide (Erleada) to Help Curb a Tough-to-Treat Prostate Cancer
February 19, 2018 - Educational Tool Boosts Cervical Length Screening
February 19, 2018 - Spider’s web inspires removable implant that may control type 1 diabetes
February 19, 2018 - Scientists develop fluorescent probe to identify cancer stem cells
February 19, 2018 - University Hospital of Santiago de Compostela participates in large pancreatic cancer study
February 19, 2018 - New blood test shows promise to revolutionize diagnosis of tick-borne diseases
February 19, 2018 - Report: Use, Not Price, Drives State Health Costs
February 19, 2018 - Emergency services crews often unprepared for diabetic crises
February 19, 2018 - Scientists in Sweden create DNA nanowires that offer hope for treatment of diseases
February 19, 2018 - ID Break: Clean Hands, Fewer Abx; $11 Million HIV Cure?; MenB Vax for Kids
February 19, 2018 - Patient exposure to X-rays depends on how dentists are paid
February 19, 2018 - Study reveals parents’ views toward children’s tanning bed use
February 19, 2018 - Shot may help reduce risk of shingles
February 19, 2018 - FDA approves first treatment to reduce risk of NSCLC progression
February 19, 2018 - FDA Expands Approval of Imfinzi (durvalumab) to Reduce the Risk of Non-Small Cell Lung Cancer Progressing
February 19, 2018 - D.C. Week: Congress Passes Spending Bill
February 19, 2018 - Heart-muscle patches made with human cells improve heart attack recovery
February 19, 2018 - FDA Approves First Blood Test to Detect Concussions
February 19, 2018 - Survival Bump in Bladder Cancer with Keytruda
February 18, 2018 - Scientists describe the mechanism of heart regeneration in the zebrafish
February 18, 2018 - Scientists uncover the structure of microtubule motor proteins
February 18, 2018 - Light-activated cancer drugs without toxic side effects are closer to becoming reality
February 18, 2018 - Pioneering research could provide novel insight into how genomic information is read
February 18, 2018 - Pearls From: David Putrino, PhD
February 18, 2018 - Researchers uncover how cancer stem cells drive triple-negative breast cancer
February 18, 2018 - Morning Break: Anti-Anti-Vaxxers; Private Piercings Prohibited; A Case for Pelvic Massage
February 18, 2018 - Lower-dose radiation effective, safe for HPV+ head and neck cancer after induction chemo
February 18, 2018 - Specialist residential service for adults with autism opens in Swansea
February 18, 2018 - FDA Moves to Limit Loperamide Doses per Package
February 18, 2018 - Alcohol use disorder – Genetics Home Reference
February 18, 2018 - Autism might be better detected using new two-minute questionnaire
February 18, 2018 - Hand hygiene-intervention practices may reduce risk of infection among nursing home patients
February 18, 2018 - Researchers develop most sophisticated mini-livers to date
February 18, 2018 - Obamacare Helped More Young Women Get Prenatal Care: Study
February 18, 2018 - School-Based Program Fails to Dent Kids’ Obesity
February 18, 2018 - Research compares neural activity in children with and without autism spectrum disorder
February 18, 2018 - Poor fitness levels increase the risk dementia, concludes study
February 18, 2018 - Risk Score May Reveal if Kids are Victims of Ill-Treatment
February 18, 2018 - Adding Folic Acid to Corn Masa Flour May Prevent Birth Defects
February 18, 2018 - Acute treatment suppresses posttraumatic arthritis in ankle injury
February 18, 2018 - A Role for Budesonide in Autoimmune Hepatitis?
February 18, 2018 - Lupus patients exhibit altered cell proteins, a discovery with potential implications for diagnostics
February 18, 2018 - Muscle plays vital role in regulating heat loss from the hands
February 18, 2018 - High-tech brain scans can provide new way to define intelligence
February 18, 2018 - Study reveals the association between ultra-processed foods and cancer
February 18, 2018 - Prescription Opioid Use Tied to Higher Pneumonia Risk
February 18, 2018 - A non-invasive method to detect Alzheimer’s disease
February 18, 2018 - Deletion of specific enzyme leads to improvement in memory and cognitive functions
February 18, 2018 - Amyloid protein may be transmitted through neurosurgical instruments, study suggests
February 18, 2018 - Electric brain signals of males and females show differences
February 18, 2018 - American Heart Association commends McDonald’s for offering healthier menu in kids’ meals
February 18, 2018 - Parents Find Kids’ Weight Report Cards Hard to Swallow
February 18, 2018 - Does a Financial Conflict of Interest Ever Expire?
February 18, 2018 - Exercise can improve Alzheimer’s symptoms
February 18, 2018 - Scientists develop green chemistry method to improve pharmaceutical manufacturing efficiency
February 17, 2018 - ‘A Time Clock to a Tissue Clock’ for Acute Stroke Care
February 17, 2018 - Cancer Care Gets Personal | NIH News in Health
February 17, 2018 - Do more youth use or do youth use more?
February 17, 2018 - Eating faster linked to obesity
February 17, 2018 - Who’s Still Smoking? ACS Report Highlights Most Vulnerable Adults
February 17, 2018 - Study of smoking and genetics illuminates complexities of blood pressure
February 17, 2018 - Study reveals new link between bone cells and blood glucose level
February 17, 2018 - Children with reading challenges may have lower than expected binocular vision test results
February 17, 2018 - Mass Shootings Trigger Change for Emergency Medicine
February 17, 2018 - ECMO helps revive woman thought to be drowned
February 17, 2018 - Learning stress-reducing techniques may benefit people with epilepsy
February 17, 2018 - Shedding Pounds Before Weight-Loss Surgery a Smart Move
Scientists develop novel technology that uses CRISPR to map genetic mutations

Scientists develop novel technology that uses CRISPR to map genetic mutations

image_pdfDownload PDFimage_print

A team of scientists led by Virginia Commonwealth University physicist Jason Reed, Ph.D., have developed new nanomapping technology that could transform the way disease-causing genetic mutations are diagnosed and discovered. Described in a study published today in the journal Nature Communications, this novel approach uses high-speed atomic force microscopy (AFM) combined with a CRISPR-based chemical barcoding technique to map DNA nearly as accurately as DNA sequencing while processing large sections of the genome at a much faster rate. What’s more–the technology can be powered by parts found in your run-of-the-mill DVD player.

The human genome is made up of billions of DNA base pairs. Unraveled, it stretches to a length of nearly six feet long. When cells divide, they must make a copy of their DNA for the new cell. However, sometimes various sections of the DNA are copied incorrectly or pasted together at the wrong location, leading to genetic mutations that cause diseases such as cancer. DNA sequencing is so precise that it can analyze individual base pairs of DNA. But in order to analyze large sections of the genome to find genetic mutations, technicians must determine millions of tiny sequences and then piece them together with computer software. In contrast, biomedical imaging techniques such as fluorescence in situ hybridization (FISH) can only analyze DNA at a resolution of several hundred thousand base pairs.

Reed’s new high-speed AFM method can map DNA to a resolution of tens of base pairs while creating images up to a million base pairs in size. And it does it using a fraction of the amount of specimen required for DNA sequencing.

“DNA sequencing is a powerful tool, but it is still quite expensive and has several technological and functional limitations that make it difficult to map large areas of the genome efficiently and accurately,” says Jason Reed, Ph.D., principal investigator on the study. Reed is a member of the Cancer Molecular Genetics research program at VCU Massey Cancer Center and an associate professor in the Department of Physics at the VCU College of Humanities and Sciences. “Our approach bridges the gap between DNA sequencing and other physical mapping techniques that lack resolution. It can be used as a stand-alone method or it can complement DNA sequencing by reducing complexity and error when piecing together the small bits of genome analyzed during the sequencing process.”

IBM scientists made headlines in 1989 when they developed AFM technology and used a related technique to rearrange molecules at the atomic level to spell out “IBM.” AFM achieves this level of detail by using a microscopic stylus–similar to a needle on a record player– that barely makes contact with the surface of the material being studied. The interaction between the stylus and the molecules creates the image. However, traditional AFM is too slow for medical applications and so it is primarily used by engineers in materials science.

“Our device works in the same fashion as AFM but we move the sample past the stylus at a much greater velocity and use optical instruments to detect the interaction between the stylus and the molecules. We can achieve the same level of detail as traditional AFM but can process material more than a thousand times faster,” says Reed, whose team proved the technology can be mainstreamed by using optical equipment found in DVD players. “High-speed AFM is ideally suited for some medical applications as it can process materials quickly and provide hundreds of times more resolution than comparable imaging methods.”

Increasing the speed of AFM was just one hurdle Reed and his colleagues had to overcome. In order to actually identify genetic mutations in DNA, they had to develop a way to place markers or labels on the surface of the DNA molecules so they could recognize patterns and irregularities. An ingenious chemical barcoding solution was developed using a form of CRISPR technology.

CRISPR has made a lot of headlines recently in regard to gene editing. CRISPR is an enzyme that scientists have been able to “program” using targeting RNA in order to cut DNA at precise locations that the cell then repairs on its own. Reed’s team altered the chemical reaction conditions of the CRISPR enzyme so that it only sticks to the DNA and does not actually cut it.

“Because the CRISPR enzyme is a protein that’s physically bigger than the DNA molecule, it’s perfect for this barcoding application,” says Reed. “We were amazed to discover this method is nearly 90 percent efficient at bonding to the DNA molecules. And because it’s easy to see the CRISPR proteins, you can spot genetic mutations among the patterns in DNA.”

To demonstrate the technique’s effectiveness, the researchers mapped genetic translocations present in lymph node biopsies of lymphoma patients. Translocations occur when one section of the DNA gets copied and pasted to the wrong place in the genome. They are especially prevalent in blood cancers such as lymphoma but occur in other cancers as well.

While there are many potential uses for this technology, Reed and his team are focusing on medical applications. They are currently developing software based on existing algorithms that can analyze patterns in sections of DNA up to and over a million base pairs in size. Once completed, it would not be hard to imagine this shoe-box-sized instrument in pathology labs assisting in the diagnosis and treatment of diseases linked to genetic mutations.

Tagged with:

About author

Related Articles