Breaking News
August 14, 2018 - Wearable devices and ‘mhealth’ technology emerge as promising tools for better health
August 14, 2018 - Phase 2 Clinical Data Published Showing Summit’s Ridinilazole Preserved Gut Microbiome of Patients with CDI
August 14, 2018 - Cardiac progenitor cells undergo a cell fate switch to build coronary arteries
August 14, 2018 - Revealed: The molecular mechanism underlying hypertrophic cardiomyopathy, or “workaholic heart”
August 14, 2018 - New technology shows potential to streamline the analysis of proteins
August 14, 2018 - Rethinking the stroke rule ‘time is brain’
August 14, 2018 - Incidence of coronary artery compression in children may be more common than previously thought
August 14, 2018 - Study helps to better understand disease caused by Alpha-1 antitrypsin deficiency
August 14, 2018 - AI platform identifies acute neurological illnesses faster than human diagnosis
August 14, 2018 - American College of Rheumatology receives grants to support development of lupus clinical trials
August 14, 2018 - New study explains why women get more migraines than men
August 14, 2018 - American Heart Association Urges Screen Time Limits for Youth
August 14, 2018 - Brief interventions during routine care reduce alcohol use among men with HIV
August 14, 2018 - New genome analysis could identify people at higher risk of common deadly diseases
August 14, 2018 - NIH grant for Mount Sinai to study use of inhaled corticosteroids for treatment of sickle cell disease
August 14, 2018 - Daicel supplies free nanodiamond samples to international researchers
August 14, 2018 - Switching anti-psychotic drugs in first-episode schizophrenia patients does not improve clinical outcomes
August 14, 2018 - Study to examine whether modulating gut bacteria can improve cardiac function in heart failure patients
August 14, 2018 - AI technology could hold key to improving health services
August 14, 2018 - One out of two children not getting enough nutrients needed for their health
August 14, 2018 - Mono-antiplatelet therapy after aortic heart valve replacements may work as well as two drugs
August 14, 2018 - Aid-in-dying patient chooses his last day
August 14, 2018 - Exercise Really Can Chase Away the Blues, to a Point
August 14, 2018 - Surgical mesh implants may cause autoimmune disorders
August 14, 2018 - Researchers develop revolutionary zebrafish model to gain more insight into bone diseases
August 14, 2018 - Researchers discover secret communication hotline between breast cancers and normal cells
August 14, 2018 - Study examines how a person adapts to visual field loss after stroke
August 14, 2018 - Researchers show how specialized nucleic acid-based nanostructures could help target cancer cells
August 14, 2018 - Reducing opioid prescriptions for one operation can also spill over to other procedures
August 14, 2018 - E-cigarettes not so safe but still better than cigarettes
August 14, 2018 - Researchers find link between common ‘harmless’ virus and cardiovascular damage
August 14, 2018 - Initiation of PIMs associated with higher risk of fracture-specific hospitalizations and mortality
August 14, 2018 - Genetically modified mosquitoes and special bed nets help tackle deadly diseases
August 14, 2018 - Advances in treating hep C lead to new option for transplant patients
August 14, 2018 - Study finds quality of doctor-patient discussions about lung cancer screening to be ‘poor’
August 14, 2018 - MSU researchers uncover the effects of aging on regenerative ability of kidneys
August 14, 2018 - Better conditioning, throwing mechanics can help reduce elbow injuries in young baseball pitchers
August 14, 2018 - Brain game doesn’t offer brain gain
August 14, 2018 - Reproductive choices facing women with disabilities require careful consideration
August 14, 2018 - Scientists pinpoint the cause of a rare childhood seizure disorder
August 14, 2018 - Lumpectomy plus radiation associated with reduced risk of breast cancer death, study finds
August 14, 2018 - UAB study shows how ion channel differentiates newborn and mature neurons in the brain
August 14, 2018 - Experts highlight key knowledge gaps that need to be addressed in Ebola vaccine research
August 14, 2018 - Discovery could lead to new drugs against infection and inflammation
August 14, 2018 - Infection Prevention Differs Between Small, Large Hospitals
August 14, 2018 - Mom still matters—In study, young adults tended to prioritize parents over friends
August 14, 2018 - Deep brain stimulation might benefit those with severe alcoholism, preliminary studies show
August 14, 2018 - Study finds increased rate of repeat pregnancies in women with intellectual and developmental disabilities
August 14, 2018 - Lighter sedation fails to reduce risk of postoperative delirium in older patients
August 13, 2018 - Asking better questions about person’s memory could improve doctors’ understanding of patients
August 13, 2018 - U.S. Trauma Doctors Push for Stricter Gun Controls
August 13, 2018 - Asthma and flu: a double whammy
August 13, 2018 - 5 Questions: Donna Zulman on engaging high-need patients in intensive outpatient programs | News Center
August 13, 2018 - Behavioral Nudges Lead to Drop in Prescriptions of Potent Antipsychotic
August 13, 2018 - Potential New Class of Drugs May Reduce Cardiovascular Risk by Targeting Gut Microbes
August 13, 2018 - How to get your kids to eat better
August 13, 2018 - The importance of hearing your patients
August 13, 2018 - Transmission of F. tularensis unlikely to happen through the food chain
August 13, 2018 - Researchers discover epigenetic mechanism underlying ischemic cardiomyopathy
August 13, 2018 - Adolescent health programs receive only a tiny share of international aid, finds research
August 13, 2018 - Fracture risk increases by 30% after gastric bypass, study shows
August 13, 2018 - Quality-improvement project to standardize feeding practices helps micro preemies gain weight
August 13, 2018 - Long-term cannabinoid exposure impairs memory, study shows
August 13, 2018 - New intervention to reduce risk of HIV in young transgender women
August 13, 2018 - Japan human trial tests iPS cell treatment for Parkinson’s
August 13, 2018 - Altered nitrogen metabolism may contribute to emergence of new cancer mutations
August 13, 2018 - Cycling provides greatest health benefits, study finds
August 13, 2018 - Scientists discover biomarker for kidney cancer
August 13, 2018 - New test predicts the risk of serious disease before symptoms appear
August 13, 2018 - Cianna Medical receives FDA 510(k) clearance to extend indication of SCOUT reflector for use in soft tissue localization
August 13, 2018 - Ground-breaking discovery offers new hope for treatment of Alzheimer’s, other neurological diseases
August 13, 2018 - Medical nutrition therapy provided by RDNs benefits patients with chronic kidney disease
August 13, 2018 - Prenatal Tdap vaccination not linked with increased risk of autism in children, study shows
August 13, 2018 - One-Third of Canadian Patients Get Hip Fx Repair Within 24 Hours
August 13, 2018 - ANA (Antinuclear Antibody) Test: MedlinePlus Lab Test Information
August 13, 2018 - Traffic jams in the brain
August 13, 2018 - NIH awards $6.5 million to establish multi-institution biomedical technology resource center
August 13, 2018 - New marker in the blood could help predict person’s risk of developing kidney cancer
August 13, 2018 - New biomarker may provide clues to create diagnostic tool for hypoglycemia-associated autonomic failure
August 13, 2018 - Oxidative Stress Hampers Blood Vessel Dilation in Men
Scientists develop novel technology that uses CRISPR to map genetic mutations

Scientists develop novel technology that uses CRISPR to map genetic mutations

image_pdfDownload PDFimage_print

A team of scientists led by Virginia Commonwealth University physicist Jason Reed, Ph.D., have developed new nanomapping technology that could transform the way disease-causing genetic mutations are diagnosed and discovered. Described in a study published today in the journal Nature Communications, this novel approach uses high-speed atomic force microscopy (AFM) combined with a CRISPR-based chemical barcoding technique to map DNA nearly as accurately as DNA sequencing while processing large sections of the genome at a much faster rate. What’s more–the technology can be powered by parts found in your run-of-the-mill DVD player.

The human genome is made up of billions of DNA base pairs. Unraveled, it stretches to a length of nearly six feet long. When cells divide, they must make a copy of their DNA for the new cell. However, sometimes various sections of the DNA are copied incorrectly or pasted together at the wrong location, leading to genetic mutations that cause diseases such as cancer. DNA sequencing is so precise that it can analyze individual base pairs of DNA. But in order to analyze large sections of the genome to find genetic mutations, technicians must determine millions of tiny sequences and then piece them together with computer software. In contrast, biomedical imaging techniques such as fluorescence in situ hybridization (FISH) can only analyze DNA at a resolution of several hundred thousand base pairs.

Reed’s new high-speed AFM method can map DNA to a resolution of tens of base pairs while creating images up to a million base pairs in size. And it does it using a fraction of the amount of specimen required for DNA sequencing.

“DNA sequencing is a powerful tool, but it is still quite expensive and has several technological and functional limitations that make it difficult to map large areas of the genome efficiently and accurately,” says Jason Reed, Ph.D., principal investigator on the study. Reed is a member of the Cancer Molecular Genetics research program at VCU Massey Cancer Center and an associate professor in the Department of Physics at the VCU College of Humanities and Sciences. “Our approach bridges the gap between DNA sequencing and other physical mapping techniques that lack resolution. It can be used as a stand-alone method or it can complement DNA sequencing by reducing complexity and error when piecing together the small bits of genome analyzed during the sequencing process.”

IBM scientists made headlines in 1989 when they developed AFM technology and used a related technique to rearrange molecules at the atomic level to spell out “IBM.” AFM achieves this level of detail by using a microscopic stylus–similar to a needle on a record player– that barely makes contact with the surface of the material being studied. The interaction between the stylus and the molecules creates the image. However, traditional AFM is too slow for medical applications and so it is primarily used by engineers in materials science.

“Our device works in the same fashion as AFM but we move the sample past the stylus at a much greater velocity and use optical instruments to detect the interaction between the stylus and the molecules. We can achieve the same level of detail as traditional AFM but can process material more than a thousand times faster,” says Reed, whose team proved the technology can be mainstreamed by using optical equipment found in DVD players. “High-speed AFM is ideally suited for some medical applications as it can process materials quickly and provide hundreds of times more resolution than comparable imaging methods.”

Increasing the speed of AFM was just one hurdle Reed and his colleagues had to overcome. In order to actually identify genetic mutations in DNA, they had to develop a way to place markers or labels on the surface of the DNA molecules so they could recognize patterns and irregularities. An ingenious chemical barcoding solution was developed using a form of CRISPR technology.

CRISPR has made a lot of headlines recently in regard to gene editing. CRISPR is an enzyme that scientists have been able to “program” using targeting RNA in order to cut DNA at precise locations that the cell then repairs on its own. Reed’s team altered the chemical reaction conditions of the CRISPR enzyme so that it only sticks to the DNA and does not actually cut it.

“Because the CRISPR enzyme is a protein that’s physically bigger than the DNA molecule, it’s perfect for this barcoding application,” says Reed. “We were amazed to discover this method is nearly 90 percent efficient at bonding to the DNA molecules. And because it’s easy to see the CRISPR proteins, you can spot genetic mutations among the patterns in DNA.”

To demonstrate the technique’s effectiveness, the researchers mapped genetic translocations present in lymph node biopsies of lymphoma patients. Translocations occur when one section of the DNA gets copied and pasted to the wrong place in the genome. They are especially prevalent in blood cancers such as lymphoma but occur in other cancers as well.

While there are many potential uses for this technology, Reed and his team are focusing on medical applications. They are currently developing software based on existing algorithms that can analyze patterns in sections of DNA up to and over a million base pairs in size. Once completed, it would not be hard to imagine this shoe-box-sized instrument in pathology labs assisting in the diagnosis and treatment of diseases linked to genetic mutations.

Tagged with:

About author

Related Articles