Breaking News
August 15, 2018 - Real-time dynamic monitoring of cell’s nucleus for effective cancer screening
August 15, 2018 - Lower rates of Medicare preventive care visits found in racial, ethnic minority older adults
August 15, 2018 - Scientists identify stress hormone as key factor in failure of immune system to inhibit leukemia
August 15, 2018 - Cytoplan introduces three new nutritional supplements
August 15, 2018 - Effective hemorrhage control critical for survival after motorsport accidents
August 15, 2018 - Sygnature Discovery announces ambitious expansion plan with addition of Alderley Park facility
August 15, 2018 - Dietary carbohydrates could lead to osteoarthritis, new study finds
August 15, 2018 - Male tobacco smokers have decreased number of cannabinoid CB1 receptors, study reveals
August 15, 2018 - Scientists explore ways for drug therapies to reach deadly brain tumors
August 15, 2018 - Rethinking fundamental rule of stroke care: ‘Time is brain!’
August 15, 2018 - Scientists reveal role of ‘junk DNA’ in cancer dissemination
August 15, 2018 - Google’s DeepMind AI could soon be diagnosing eye conditions
August 15, 2018 - Scientists trick the brain to embody the prosthetic limb
August 15, 2018 - Researchers focus on uncoupling obesity from diabetes
August 15, 2018 - A class of proteins shown to be effective in reducing drug-seeking behaviors
August 15, 2018 - Gemphire Announces Termination of Phase 2a Clinical Trial of Gemcabene in Pediatric NAFLD
August 15, 2018 - Rheumatoid arthritis in pregnancy associated with low birth weight and premature birth
August 15, 2018 - Study may help increase effectiveness of antibiotics against drug-resistant bacteria
August 15, 2018 - Analyzing resident-to-resident incidents in dementia may hold the key to reducing future fatalities
August 15, 2018 - Robotic walking frame aims to help maintain mobility of older adults
August 15, 2018 - Simple intervention during routine care reduces alcohol consumption in men with HIV
August 15, 2018 - Genetics Home Reference: gout
August 15, 2018 - Scientists ID genesis of disease, focus efforts on shape-shifting tau
August 15, 2018 - OncoThira and NDSU enter into license agreement to develop, market cancer compounds
August 15, 2018 - Scientists unravel the mystery behind ovarian cancer with high-grade serous carcinoma
August 15, 2018 - Common signs that indicate vision problems in children
August 15, 2018 - Removing the cancer label – overhaul in cancer classification proposed
August 15, 2018 - Prams may expose babies and toddlers to more air pollution finds study
August 15, 2018 - Duke researchers track missing T-cells in glioblastoma patients
August 15, 2018 - Cardiac Profiles Up With Exercise, Less Sitting in Early Old Age
August 15, 2018 - Precision medicine offers a glimmer of hope for Alzheimer’s disease
August 15, 2018 - Immunovia’s new blood-based testing platform accurately detects non-small cell lung cancer
August 15, 2018 - New method provides a ‘big picture’ of genetic influences on traits and diseases
August 15, 2018 - Early Onset Type 1 Diabetes Linked to Heart Disease, Shorter Life
August 14, 2018 - SMURF1 provides targeted approach to preventing cocaine addiction relapse
August 14, 2018 - Genetic testing pushed for hereditary high cholesterol disease
August 14, 2018 - Researchers discover new genes involved in Alzheimer’s Disease
August 14, 2018 - Medicare to overhaul ACOs but critics fear fewer participants
August 14, 2018 - Adolescent health projects receive meager percentage of global funding, study finds
August 14, 2018 - University Hospitals Seidman Cancer Center launches new CAR-T therapy trial
August 14, 2018 - In the addiction battle, is forced rehab the solution?
August 14, 2018 - Busting myths about milk – Scope
August 14, 2018 - Platelet-rich plasma does not enhance cartilage formation capabilities of stem cells
August 14, 2018 - Wearable devices and ‘mhealth’ technology emerge as promising tools for better health
August 14, 2018 - Johns Hopkins expert panel develops first set of operation-specific opioid prescribing guidelines
August 14, 2018 - Clinical study suggests new treatment direction for head and neck cancer in heavy smokers
August 14, 2018 - Phase 2 Clinical Data Published Showing Summit’s Ridinilazole Preserved Gut Microbiome of Patients with CDI
August 14, 2018 - Cardiac progenitor cells undergo a cell fate switch to build coronary arteries
August 14, 2018 - Study identifies potential guidance to treat gastric cancer patients
August 14, 2018 - Revealed: The molecular mechanism underlying hypertrophic cardiomyopathy, or “workaholic heart”
August 14, 2018 - Diabetes epidemic in Guatemala driven by aging, not obesity
August 14, 2018 - New technology shows potential to streamline the analysis of proteins
August 14, 2018 - Rethinking the stroke rule ‘time is brain’
August 14, 2018 - Incidence of coronary artery compression in children may be more common than previously thought
August 14, 2018 - Study helps to better understand disease caused by Alpha-1 antitrypsin deficiency
August 14, 2018 - AI platform identifies acute neurological illnesses faster than human diagnosis
August 14, 2018 - American College of Rheumatology receives grants to support development of lupus clinical trials
August 14, 2018 - New study explains why women get more migraines than men
August 14, 2018 - American Heart Association Urges Screen Time Limits for Youth
August 14, 2018 - Brief interventions during routine care reduce alcohol use among men with HIV
August 14, 2018 - New genome analysis could identify people at higher risk of common deadly diseases
August 14, 2018 - NIH grant for Mount Sinai to study use of inhaled corticosteroids for treatment of sickle cell disease
August 14, 2018 - Daicel supplies free nanodiamond samples to international researchers
August 14, 2018 - Switching anti-psychotic drugs in first-episode schizophrenia patients does not improve clinical outcomes
August 14, 2018 - Study to examine whether modulating gut bacteria can improve cardiac function in heart failure patients
August 14, 2018 - AI technology could hold key to improving health services
August 14, 2018 - One out of two children not getting enough nutrients needed for their health
August 14, 2018 - Mono-antiplatelet therapy after aortic heart valve replacements may work as well as two drugs
August 14, 2018 - Aid-in-dying patient chooses his last day
August 14, 2018 - Exercise Really Can Chase Away the Blues, to a Point
August 14, 2018 - Surgical mesh implants may cause autoimmune disorders
August 14, 2018 - Researchers develop revolutionary zebrafish model to gain more insight into bone diseases
August 14, 2018 - Researchers discover secret communication hotline between breast cancers and normal cells
August 14, 2018 - Study examines how a person adapts to visual field loss after stroke
August 14, 2018 - Researchers show how specialized nucleic acid-based nanostructures could help target cancer cells
August 14, 2018 - Reducing opioid prescriptions for one operation can also spill over to other procedures
August 14, 2018 - E-cigarettes not so safe but still better than cigarettes
August 14, 2018 - Researchers find link between common ‘harmless’ virus and cardiovascular damage
August 14, 2018 - Initiation of PIMs associated with higher risk of fracture-specific hospitalizations and mortality
August 14, 2018 - Genetically modified mosquitoes and special bed nets help tackle deadly diseases
Biologists reveal how bacterial cells thrive in oxygen-poor environments

Biologists reveal how bacterial cells thrive in oxygen-poor environments

image_pdfDownload PDFimage_print

Columbia University biologists have revealed a mechanism by which bacterial cells in crowded, oxygen-deprived environments access oxygen for energy production, ensuring survival of the cell. The finding could explain how some bacteria, such as Pseudomonas aeruginosa (P. aeruginosa), are able to thrive in oxygen-poor environments like biofilms and resist antibiotics.

P. aeruginosa biofilm infections are a leading cause of death for people suffering from cystic fibrosis, a genetic condition that affects the lungs and the digestive system,” said Principal Investigator Lars Dietrich, an associate professor of biological sciences. “An understanding of the pathways that contribute to the survival and virulence of P. aeruginosa and other bacteria able to exist in oxygen-starved environments could inform treatment approaches for many of these and other immunocompromised patients.”

The study appears this week in the journal eLife.

Bacteria rarely live by themselves as single-celled organisms. Most instead grow in communities, leveraging the strength of numbers to form a biofilm with tissue-like properties similar to a scaffold that serves to fortify the community, making it up to 1,000 times more resistant to most antibiotics.

Each individual cell must on its own extract electrons from food that are then transported along the cell’s membrane until they reach an oxygen molecule. The energy released during this metabolic process is used to sustain life. As communities of bacteria continue to grow and form into a biofilm, however, they can become overcrowded, creating an environment where each cell has to compete for limited nutrients and oxygen to survive.

Research has shown that some bacteria, including P. aeruginosa, have evolved different strategies to respond to and cope with the low-oxygen conditions in biofilms. Communities of bacteria can, for example, change the overall structure of the biofilm so that its surface area-to-volume ratio is higher and a larger proportion of the cells inside are able to access the oxygen on the outside. P. aeruginosa can also make molecules called phenazines, which help to shuttle electrons from the inside to the outside of the cell and ultimately to oxygen available at a distance. Another strategy is to make alternative versions of terminal oxidases, enzymes in the membrane that transfer electrons to oxygen, which use oxygen more efficiently or are better at scavenging oxygen when its concentration is low. While there have been numerous studies done to examine the importance of these enzymes and strategies for P. aeruginosa growth, they’ve largely been conducted in well-oxygenated liquid cultures in the lab. When P. aeruginosa infects an actual host, such as a human, it often grows as a biofilm and encounters vastly different conditions.

With federal funding from the National Institutes of Health and the National Science Foundation, Dietrich, first author Jeanyoung Jo, and their colleagues set out to better understand whether specific terminal oxidases are important for P. aeruginosa metabolism in biofilm communities, how phenazines can compensate for low oxygen levels, and how these adapted strategies may contribute to P. aeruginosa‘s ability to cause infections.

They found that the electron transport chain so critical to the conversion of electrons to energy can and is operating deep down in the oxygen-deprived biofilm and that in these environments, the bacterium depends on a specific part of the chain’s terminal oxidase – a protein called CcoN4 – to access oxygen and grow normally. Cells lacking this protein do not survive as well as cells with it and the researchers believe therefore that CcoN4 contributes to the bacterium’s virulence. They also found that CcoN4 plays a role in using phenazines optimally within biofilms. Though these phenazines have previously been shown to metabolically compensate for the low-oxygen conditions in P. aeruginosa biofilms, the mechanism allowing for this had remained a scientific mystery.

“This bacterium is a master at finding different strategies to access oxygen,” Dietrich said. “We knew that phenazines were involved and that they were somehow helping the cell get oxygen, but we didn’t know how. It appears they are coming from the electron transport chain. That’s an important revelation. We know that bacterial cells have different ways of metabolizing energy in oxygen-rich environments, but for the longest time we couldn’t figure out how they were doing it when oxygen is difficult to access.”

The findings could have big implications for the treatment of P. aeruginosa biofilm infections, as an understanding of the pathways that contribute to P. aeruginosa survival and virulence could inform treatment approaches for patients. Developing therapies that block CcoN4-containing terminal oxidases, for example, would weaken the bacterium and its ability to cause infection.

“We’re starting to understand more and more how cells are able to survive in pretty horrible circumstances,” Dietrich said. “We’re understanding the mechanism. Now we can begin to look for ways to shut down that process.”

Tagged with:

About author

Related Articles