Breaking News
August 16, 2018 - Childhood exposure to secondhand smoke increases risk of COPD death in adulthood
August 16, 2018 - Scientists uncover key control mechanism of DNA replication
August 16, 2018 - NIH begins first-in-human trial of experimental live, attenuated Zika virus vaccine
August 16, 2018 - Two diabetes medications don’t slow progression of type 2 diabetes in youth
August 16, 2018 - 5 Questions: How Stanford research is making MRI scans safer for kids | News Center
August 16, 2018 - Columbia Celebrates 25th Anniversary of White Coat Ceremony
August 16, 2018 - Phonak’s new smallest and most discreet Virto B-Titanium hearing aid
August 16, 2018 - New project aims to study growth of water-based microorganisms
August 16, 2018 - New research confirms link between DDT exposure and autism
August 16, 2018 - Neurodevelopmental Anomalies, Birth Defects Linked to Zika ID’d
August 16, 2018 - Risk of heart failure up in ALVSD patients with diabetes
August 16, 2018 - Exercise reduces symptoms and fatigue in patients with chronic kidney disease
August 16, 2018 - Study reveals role of RUNX proteins in DNA repair
August 16, 2018 - New research finds no harm from average salt consumption
August 16, 2018 - Researchers develop new way of testing bacterial resistance to antibiotics
August 16, 2018 - Magnetic gene in aquarium fish could open doors to treatment for epilepsy, Parkinson’s
August 16, 2018 - Five tips for successful long-term breastfeeding
August 16, 2018 - Researchers identify brain networks involved in object naming
August 16, 2018 - Promoting HPV Vaccine Doesn’t Prompt Risky Sex by Teens: Study
August 16, 2018 - Treating Rheumatoid Arthritis: Search for a Cure
August 16, 2018 - Research shows in the long run, charcoal toothpaste likely won’t whiten teeth
August 16, 2018 - Seattle Children’s opens new clinic to provide convenient access to pediatric specialty care services
August 16, 2018 - Curious case of the lost contact lens
August 16, 2018 - GN Hearing unveils world’s first Premium-Plus hearing aid
August 16, 2018 - Parental life span linked with increased longevity and health in daughters
August 16, 2018 - Health leaders reveal ten most important medicines in NHS history
August 16, 2018 - Mobile health devices diagnose hidden heart condition in at-risk populations
August 16, 2018 - When it comes to shedding pounds, it pays to think big
August 16, 2018 - Liva Healthcare announces appointment of Thomas Cooke as clinical services manager in the UK
August 16, 2018 - New digital pharmacy aims to help people living with chronic care conditions
August 16, 2018 - Preventing ACL injuries in high school athletes
August 16, 2018 - Experts provide insight into novel concepts and approaches for stroke rehabilitation
August 16, 2018 - Scientists reverse congenital blindness in mouse model
August 16, 2018 - Study shows link between use of benzodiazepines and increased risk of Alzheimer’s disease
August 16, 2018 - Study provides new insight into how ‘trash bag of the cell’ traps and seals off waste
August 16, 2018 - Trial shows PARP inhibitor as novel treatment option for patients with advanced breast cancers
August 16, 2018 - Prenatal exposure to violence increases toddlers’ aggressive behavior to their mothers
August 16, 2018 - Can manipulating gut microbes improve cardiac function in patients with heart failure?
August 16, 2018 - Hearts of newborn piglets can completely heal after heart attacks
August 16, 2018 - Ablating the mutant p53 gene in mice with colorectal cancer inhibits tumor growth
August 16, 2018 - Higher BMI in people with prediabetes related to evening preference and lack of sufficient sleep
August 16, 2018 - Using peripheral nerve blocks to treat facial pain may produce long-term pain relief
August 16, 2018 - Neural stem cells are the key to tail regeneration
August 16, 2018 - Study compares genetic and neural contributions to ADHD in children with or without TBI
August 16, 2018 - Adding energy drinks to alcohol may exacerbate negative effects of binge drinking
August 16, 2018 - Eye Examination Can Help Detect Abuse in Children
August 16, 2018 - Know the Difference: Rheumatoid Arthritis or Osteoarthritis?
August 16, 2018 - From ‘sea of mutations,’ two possible cancer links rise to the surface
August 16, 2018 - Does medical school take too long?
August 16, 2018 - Brown University researchers reveal key physical properties of ‘giant’ cancer cells
August 16, 2018 - Regular resistance training improves exercise motivation
August 16, 2018 - Feds urge states to encourage cheaper plans off the exchanges
August 16, 2018 - Seven activities that prevent you from getting quality sleep during summer
August 16, 2018 - Five ways to tell if your baby is getting enough milk from breastfeeding
August 16, 2018 - From Pigs to Peacocks, What’s Up With Those ‘Emotional-Support Animals’?
August 16, 2018 - Breast cancers enlist the help of normal cells to help them spread and survive
August 16, 2018 - Engaging with “high-need” patients outside the clinic
August 16, 2018 - Research illuminates how online forum may offer suicide prevention support for males
August 16, 2018 - Researchers identify way to grow immune cells at large scale for preventing cancer reoccurrence
August 15, 2018 - Keck Medicine of USC’s hospitals ranked among nation’s best for the 10th consecutive year
August 15, 2018 - Researchers compare existing approaches for automating diagnostic procedures of skin lesions
August 15, 2018 - Autism risk determined by health of mom’s gut, research reveals
August 15, 2018 - WELL for Life challenges you to explore the great outdoors
August 15, 2018 - ‘Zombie’ gene protects elephants from cancer, study finds
August 15, 2018 - Ebola outbreak in Congo spreads to active combat zone
August 15, 2018 - Study highlights pollution exposure of babies in prams
August 15, 2018 - Study provides insight into link between sleep apnea and lipid metabolism
August 15, 2018 - New study focuses on promise of gene therapy for Amish nemaline myopathy
August 15, 2018 - Researchers discover new approach to alleviate chronic itch
August 15, 2018 - Uncovering the Mysteries of MS: Medical Imaging Helps NIH Researchers Understand the Tricky Disease
August 15, 2018 - Autistic people at greater risk of becoming homeless – new research
August 15, 2018 - New imaging technique can spot tuberculosis infection in an hour
August 15, 2018 - Scientists study effects of eating breakfast versus fasting overnight before exercise
August 15, 2018 - Talking with children about suicide could save lives
August 15, 2018 - Grip strength of children predicts future cardiometabolic health
August 15, 2018 - New polyclonal immunotherapy successfully neutralizes Ebola virus
August 15, 2018 - Innovative oncofertility program launched by RMA of New York and Mount Sinai Health System
August 15, 2018 - Study shows efficacy, safety of AAV5-based gene therapy to treat sheep model of achromatopsia
August 15, 2018 - Simple score helps predict which hospitalized heart attack patients are at high risk of readmissions
August 15, 2018 - New discoveries show how protein droplets do more than keep cells’ interiors tidy
New microscope optimized to perform studies using optogenetic techniques

New microscope optimized to perform studies using optogenetic techniques

image_pdfDownload PDFimage_print

A newly developed microscope is providing scientists with a greatly enhanced tool to study how neurological disorders such as epilepsy and Alzheimer’s disease affect neuron communication. The microscope is optimized to perform studies using optogenetic techniques, a relatively new technology that uses light to control and image neurons genetically modified with light-sensitive proteins.

“Our new microscope can be used to explore the effects of different genetic mutations on neuronal function,” said Adam Cohen from Harvard University, USA, and the leader of the research team that developed the microscope. “One day it could be used to test the effects of candidate drugs on neurons derived from people with nervous system disorders to try to identify medicines to treat diseases that do not have adequate treatments right now.”

The new microscope, called Firefly, can image a 6-millimeter-diameter area, more than one hundred times larger than the field of view of most microscopes used for optogenetics. Rather than studying the electrical activity of one neuron, the large imaging area makes it possible to trigger the electrical pulses neurons use to communicate and then watch those pulses travel from cell to cell throughout a large neural circuit containing hundreds of cells. In the brain, each neuron typically connects to one thousand other neurons, so viewing the larger network is important to understanding how neurological diseases affect neuronal communication.

In The Optical Society (OSA) journal Biomedical Optics Express, Cohen and his colleagues report how they assembled the new microscope for less than $100,000 using components that are almost all commercially available. The microscope not only images a large area, but also collects light extremely efficiently. This provides the high image quality and fast speed necessary to watch neuronal electrical pulses that each last only one-thousandth of a second.

Using light to see neurons fire

The new microscope is ideal for studying human neurons grown in the laboratory. In the past decade, scientists have developed human cell models for many nervous system disorders. These cells can be genetically modified to contain light-sensitive proteins that allow scientists to use light to make neurons fire or to control variables such as neurotransmitter levels or protein aggregation. Other light-sensitive fluorescent proteins turn the invisible electrical pulses coming from neurons into brief flashes of fluorescence that can be imaged and measured.

These techniques have made it possible for scientists to study the input and output of individual neurons, but commercially available microscopes aren’t optimized to fully utilize the potential of optogenetics approaches. To fill this technology gap, the researchers designed the Firefly microscope to stimulate neurons with a complex pattern containing a million points of light and then record the brief flashes of light fluorescence that correspond to electrical pulses fired by the neurons.

Each pixel of the light pattern can independently stimulate a light-sensitive protein. Because the pixels can be many distinct colors, different types of light-sensitive proteins can be triggered at once. The light pattern can be programmed to cover an entire neuron, stimulate certain areas of a neuron or be used to illuminate multiple cells at once.

“This optical system provides a million inputs and a million outputs, allowing us to see everything that’s going on in these neural cultures,” explained Cohen.

After stimulating the neurons, the microscope uses a camera imaging at a thousand frames a second to capture the fluorescence induced by the extremely short electrical pulses. “The optical system must be highly efficient to detect good signals within a millisecond,” said Cohen. “A great deal of engineering went into developing optics that can not only image a large area but do so with very high light collection efficiency.”

To efficiently collect light over a large area, the Firefly microscope uses an objective lens about the size of a soda can rather than the thumb-sized objective lens used by most microscopes. The researchers also used an optical setup that increases the amount of light stimulating the neurons to help ensure the neurons emit bright fluorescence when firing.

“The one custom element in the microscope is a small prism placed between the neurons and the objective lens,” explained Cohen. “This important component causes the light to travel along the same plane as the cells rather than entering the sample perpendicularly. This keeps the light from illuminating material above and below the cells, decreasing background fluorescence that would make it hard to see fluorescence actually coming from the neurons.”

Watching 85 neurons at once

The researchers demonstrated their new microscope by using it to optically stimulate and record the fluorescence from cultured human neurons. “The neurons were a big tangled mess of spaghetti,” said Cohen. “We showed that it was possible to resolve 85 individual neurons at the same time in a measurement that took about 30 seconds.”

After the initial stimulation and imaging, the researchers were able to find 79 of those 85 cells a second time. This capability is important for studies that require each cell to be imaged before and after exposure to a drug, for example.

In a second demonstration, the researchers used the microscope to map the electrical waves propagating through cultured heart cells. This showed that the microscope could be used to study abnormal heart rhythms, which occur when the electrical signals that coordinate heartbeats do not work properly.

“The system we developed is designed for looking at a relatively flat sample such as cultured cells,” said Cohen. “We are now developing a system to perform optogenetics approaches in intact tissue, which would allow us to look at how these neurons behave in their native context.”

The researchers have also started a biotech company called Q-State Biosciences that is using an improved version of the microscope to work with pharmaceutical companies on drug discovery.

Source:

http://www.osa.org/en-us/about_osa/newsroom/news_releases/2017/innovative_microscope_poised_to_propel_optogenetic/

Tagged with:

About author

Related Articles