Breaking News
October 17, 2018 - Network of doctors identify the cause of 31 new conditions
October 17, 2018 - Notable improvement in brain cancer survival among younger patients but not much for elderly
October 17, 2018 - Scientists shed light on roles of transcription factors, TP63 and SOX2, in squamous cell carcinoma
October 17, 2018 - Costs of Medicare Diabetes Prevention Program may be higher than expected reimbursement
October 17, 2018 - Misuse of prescription opioids or benzodiazepines associated with suicidal thoughts
October 17, 2018 - C-Section Rates Have Nearly Doubled Since 2000: Study
October 17, 2018 - Talking to Your Kids About STDs
October 17, 2018 - New classification of periodontal and peri-implant diseases and conditions
October 17, 2018 - Herbert D. Kleber, Pioneer in Addiction Treatment, Dies at 84
October 17, 2018 - Health effects of smoke-filled atmosphere
October 17, 2018 - Down syndrome may hold important clues to onset of Alzheimer’s disease
October 17, 2018 - A special report on US’ aging societies
October 17, 2018 - Birth mode may have acute effects on neurodevelopment, study suggests
October 17, 2018 - Global health innovation system fails to deliver affordable treatments to patients, says report
October 17, 2018 - Simple, inexpensive test quickly detects antibiotic-resistant ‘superbugs’
October 17, 2018 - New drugs could reduce risk of heart disease when added to statins
October 17, 2018 - Visible and valued: Stanford Medicine’s first-ever LGBTQ+ Forum
October 17, 2018 - HVP vaccination not linked with rise in teen risky sex
October 17, 2018 - Potential ‘early warning markers’ for sepsis discovered
October 17, 2018 - Who knew? Life begins (again) at 65
October 17, 2018 - Application of blood pressure guidelines ups treatment
October 17, 2018 - Stanford researchers find that small molecule may help treat enzyme deficiency
October 17, 2018 - Speed Cameras Save Money and Lives in New York City
October 17, 2018 - Men who conform to ‘the man box’ more likely to consider suicide and violence
October 17, 2018 - Researchers aim to create more authentic organoids for drug testing, transplantation
October 16, 2018 - New blood test for pediatric brain tumor patients offers safer approach than surgical biopsies
October 16, 2018 - Age-related estrogen increase may be the culprit behind inguinal hernias in men
October 16, 2018 - Skills-Based Intervention Did Not Cut Systolic BP After Stroke, TIA
October 16, 2018 - Researchers uncover new role of TIP60 protein in controlling tumour formation
October 16, 2018 - Behind the scenes of a lifesaving heart surgery
October 16, 2018 - ‘To See the Suffering’
October 16, 2018 - Drinking concentrated rosemary extract can boost memory by up to 15%, shows research
October 16, 2018 - Medicare Advantage riding high as new insurers flock to sell to seniors
October 16, 2018 - NHS tackles prescription fraud to save millions
October 16, 2018 - New molecular switch may help develop sophisticated photomedications
October 16, 2018 - Improving access to behavioral health screenings for pregnant and postpartum women
October 16, 2018 - Health Highlights: Oct. 12, 2018
October 16, 2018 - Study holds promise for new pediatric brain tumor treatment
October 16, 2018 - Patient advocate uses MRI scans to create art and spark conversations about life with illness
October 16, 2018 - Fish oil based diets may suppress growth and spread of breast cancer cells
October 16, 2018 - Number of VHA facilities offering acupuncture has increased rapidly
October 16, 2018 - Influential Leapfrog Group jumps in to rate 5,600 surgery centers
October 16, 2018 - HIV-infected infants more likely to acquire congenital cytomegalovirus infection
October 16, 2018 - Study pinpoints new marker that can predict Crohn’s disease subtype
October 16, 2018 - Simple procedure could be efficacious intervention for failed back surgery
October 16, 2018 - New research identifies modifiable dementia risk factor in elderly people
October 16, 2018 - Zebrafish study uncovers molecular ‘brake’ that helps control eye lens development
October 16, 2018 - Overlapping copy number variations underlie autism and schizophrenia in Japanese patients
October 16, 2018 - Early menopause and diabetes may reduce life expectancy
October 16, 2018 - Majority of Americans’ ancestry can be traced through existing DNA databases
October 16, 2018 - Patients coerced into mental health care less likely to perceive treatment as effective
October 16, 2018 - Healthy elders can consume walnuts without having negative impact on weight gain, finds study
October 16, 2018 - Interactive robot helps older people exercise and detects underlying health problems
October 16, 2018 - What you need to know about autism spectrum disorder
October 16, 2018 - Antidepressants can be used to treat Alzheimer’s disease
October 16, 2018 - Study uncovers important role of PRMT1 in dilated cardiomyopathy
October 16, 2018 - Nutritional quality of breakfast linked to cardiovascular and metabolic risk factors in children
October 16, 2018 - Study uses novel approach to investigate genetic origins of mental illnesses
October 16, 2018 - Scientists develop dual anthrax-plague vaccine
October 16, 2018 - Poor Outcomes for Hispanic Infants With Congenital Heart Dz
October 16, 2018 - Global study finds youngest in class more likely to be diagnosed with ADHD
October 16, 2018 - Researchers sequence two selfish genes in the fungus Neurospora intermedia
October 16, 2018 - Survey results highlight the need for better communication between patients and HCPs about bacterial vaginosis
October 16, 2018 - Researchers develop fibrin-targeting immunotherapy to protect against neurodegeneration
October 16, 2018 - Researchers create open access database on healthy immunity
October 16, 2018 - Rice University chemist wins big award to study small surfaces
October 16, 2018 - Study finds 43% drop in stroke rate
October 16, 2018 - Researchers identify basic relationships of cell cycle and cellular senescence in the placenta
October 16, 2018 - UA professor receives NSF grant to develop antifouling materials for medical implants
October 16, 2018 - Obesity Doubles Odds for Colon Cancer in Younger Women
October 16, 2018 - Adults with ADHD not constrained in creativity
October 16, 2018 - Raising visibility for people and students with chronic illness and disability
October 16, 2018 - Allele awarded NIH grant to develop nanoantibody therapies for treatment of sepsis
October 16, 2018 - Only 59% of young adults undergoing surgery are fluid responsive
October 16, 2018 - Research points to potential new treatment for hearing loss
October 16, 2018 - MDI Biological Laboratory receives $1.2 million SEPA grant to promote data literacy
October 16, 2018 - Vast majority of dementia cases may arise from spontaneous genetic errors
October 16, 2018 - New project aims to deliver fast, effective treatment for autoimmune rheumatic diseases
October 16, 2018 - Study identifies molecular switch that controls fate of milk-producing breast cells
October 16, 2018 - Research shows diet has little influence on precursor to gout
Using AFM to characterize cancer cells

Using AFM to characterize cancer cells

image_pdfDownload PDFimage_print

An interview with Dr. Jim Gimzewski, UCLA conducted by April Cashin-Garbutt, MA (Cantab)

Can you please give a brief introduction to your research characterizing cancer cells?

My name is James Gimzewski and I am a distinguished professor at UCLA. I’m in the Chemistry and Biochemistry department, but I am also heavily involved in the California NanoSystems Institute at UCLA. We were probably the first to pioneer the idea of what is now known as mechanobiology – the study of the mechanical properties of cancer cells as a potential diagnostic tool.

Credit: Mikheiken, A. et al. DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle. Nat Commun. 8, 1665 (2017)

How has AFM allowed you to measure cell softness and why is this important?

One of the beautiful things about AFM is that it is a mechanical tool. In the same way a doctor would feel the skin or tissue of a patient, AFM allows that to be done on the nanoscale and it is unique in that respect.

What challenges did you have to overcome in terms of making sure the cells didn’t burst?

We know a lot about AFM technology. At the beginning, AFM was not very good at biology at all. However, we are experts in nanotechnology and by working with people who are experts in cells, and bringing the two fields together, we could conduct a lot of research and decrease forces, for instance, and understand things about the tip, which enabled us to develop this ability.

Mechanobiology and AFM from AZoNetwork on Vimeo.

 

Is it known why metastatic cancer cells are extremely soft compared to normal cells despite similarities in appearance?

I work with people at UCLA who are experts in pathology and there are subtle differences in certain morphologies and so on in cancer cells, but it is not always possible to tell that.

We have an orthogonal tool that when used to look at the mechanobiology, shows us that the metastatic cancer cells are about 10 times softer than some equivalent mesothelial cells that would be in a sample.

Will it be possible to use AFM in the clinical environment as a diagnostic tool?

I have been working with Jianya Rao who is the head of pathology and specializes in cancer diagnosis. Together, we are working on a new type of tool, which is an automated platform that would allow, for instance, medical people to use the microscope and automatically detect cancer cells. That is the long-term goal of our work − being able to translate that into a medical setting.

How has AFM directly advanced or helped your research?

I have always been interested in nanomechanics. I started studying nanotechnology in 1983 at IBM and then I moved to UCLA in 2001. I started to think we could use this nanomechanical tool as a unique way of looking at biology and that led me into medicine. It is an essential tool and it keeps improving by getting faster and more automated. I have a rosy view for the future of its use in medicine.

What is the biggest impact that AFM has made to the biological and nanomedicine research fields?

There are numerous ones. Of course, I particularly like the ability to study mechanobiology, but I am also interested in imaging and high-speed AFM. We have been able to image molecular motors running along actin filaments. High speed allows you to take videos of life at the nanoscale and I think they are marvelous. More things will emerge in the future.

Credit: Mikheiken, A. et al. DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle. Nat Commun. 8, 1665 (2017)

How has Bruker technology helped or advanced AFM in biological research?

They are one of the leading companies, particularly in the bio field. Personally, together with the California NanoSystems Institute, we have a very close relationship. They are in Santa Barbara and we are in Los Angeles.

They go out of their way to tweak and modify the machine according to who is working in bio and medical needs. I think that has been a very important aspect and, in particular, Chanmin Su is an absolute wizard at putting things together in a very short space of time!

What is the importance of meetings, like the AFM BioMed Conference, to you and the AFM research community?

Just today, I have learned so much. I try to keep up with the literature. In the old days, there were perhaps 50 AFM researchers in the world, whereas today, there are thousands of AFM researchers. This is therefore a great opportunity to get together, talk to people, find out the latest developments and even come up with new ideas and ideas for collaboration.

This is a particularly good meeting. It is also not too big; it doesn’t have parallel sessions and so on, so you can really have a one-to-one relationship with a lot of the people who are talking here or presenting posters.

What direction do you see, or would like to see, AFM going in the next five years? What do you see as the next big thing for AFM?

I would like to see a couple of things. I would like to see the speed keep increasing. At the moment, just some small demonstrations have shown 1,000 frames a second is possible under certain conditions, but it would be good if under all biological conditions, we could have really fast videos and watch the mechanics of life in motion. I think that is one direction.

The other direction concerns the fact that AFMs tend to be general purpose. They can look at cells and at strands of DNA. They can do lots of things, but that comes at a price. I would like to see more purpose-built AFMs − ones that can map DNA and are designed for that high speed. In the field of medical diagnosis, it would be useful to have machines that are much easier to operate so that a medical technician could run them.

A third direction that is important to me is to keep reducing the forces down to piconewtons. We typically talk about nanonewtons in AFM, but I would like to see a move to very low perturbations in terms of the forces.

Those are the three things that I personally would like to see happen and I think they will happen.

Where can readers find more information?

About Dr. Jim Gimzewski

Dr. James K. Gimzewski is a distinguished professor of Chemistry at the University of California, Los Angeles and member of the California NanoSystems Institute. His current research includes nanoscale science of biological systems, fabrication of atomic switch networks to emulate the neocortex and the mechanobiology of cells, exosomes and actin bound with neuronal binding proteins.

Dr. Gimzewski is a Fellow of the Royal Society and Royal Academy of Engineering. He has received honorary Doctorates (DSc hc & PhD hc) from the University of Aix II in Marseille, France and from the University of Strathclyde, Glasgow. He is a PI at Materials Nanoarchitectonics  (MANA)  in the National Institute of Materials Science (NIMS), Tsukuba, Japan. He is also Scientific director of the UCLA Art|Sci Center.

Prior to joining the UCLA faculty in 2001, he was a group leader at IBM Zurich Research Laboratory, where he conducted research in nanoscale science and technology for more than 18 years. Dr. Gimzewski pioneered research on mechanical and electrical contacts with single atoms and molecules using scanning tunneling microscopy (STM).

Tagged with:

About author

Related Articles