Breaking News
August 15, 2018 - Real-time dynamic monitoring of cell’s nucleus for effective cancer screening
August 15, 2018 - Lower rates of Medicare preventive care visits found in racial, ethnic minority older adults
August 15, 2018 - Scientists identify stress hormone as key factor in failure of immune system to inhibit leukemia
August 15, 2018 - Cytoplan introduces three new nutritional supplements
August 15, 2018 - Effective hemorrhage control critical for survival after motorsport accidents
August 15, 2018 - Sygnature Discovery announces ambitious expansion plan with addition of Alderley Park facility
August 15, 2018 - Dietary carbohydrates could lead to osteoarthritis, new study finds
August 15, 2018 - Male tobacco smokers have decreased number of cannabinoid CB1 receptors, study reveals
August 15, 2018 - Scientists explore ways for drug therapies to reach deadly brain tumors
August 15, 2018 - Rethinking fundamental rule of stroke care: ‘Time is brain!’
August 15, 2018 - Scientists reveal role of ‘junk DNA’ in cancer dissemination
August 15, 2018 - Google’s DeepMind AI could soon be diagnosing eye conditions
August 15, 2018 - Scientists trick the brain to embody the prosthetic limb
August 15, 2018 - Researchers focus on uncoupling obesity from diabetes
August 15, 2018 - A class of proteins shown to be effective in reducing drug-seeking behaviors
August 15, 2018 - Gemphire Announces Termination of Phase 2a Clinical Trial of Gemcabene in Pediatric NAFLD
August 15, 2018 - Rheumatoid arthritis in pregnancy associated with low birth weight and premature birth
August 15, 2018 - Study may help increase effectiveness of antibiotics against drug-resistant bacteria
August 15, 2018 - Analyzing resident-to-resident incidents in dementia may hold the key to reducing future fatalities
August 15, 2018 - Robotic walking frame aims to help maintain mobility of older adults
August 15, 2018 - Simple intervention during routine care reduces alcohol consumption in men with HIV
August 15, 2018 - Genetics Home Reference: gout
August 15, 2018 - Scientists ID genesis of disease, focus efforts on shape-shifting tau
August 15, 2018 - OncoThira and NDSU enter into license agreement to develop, market cancer compounds
August 15, 2018 - Scientists unravel the mystery behind ovarian cancer with high-grade serous carcinoma
August 15, 2018 - Common signs that indicate vision problems in children
August 15, 2018 - Removing the cancer label – overhaul in cancer classification proposed
August 15, 2018 - Prams may expose babies and toddlers to more air pollution finds study
August 15, 2018 - Duke researchers track missing T-cells in glioblastoma patients
August 15, 2018 - Cardiac Profiles Up With Exercise, Less Sitting in Early Old Age
August 15, 2018 - Precision medicine offers a glimmer of hope for Alzheimer’s disease
August 15, 2018 - Immunovia’s new blood-based testing platform accurately detects non-small cell lung cancer
August 15, 2018 - New method provides a ‘big picture’ of genetic influences on traits and diseases
August 15, 2018 - Early Onset Type 1 Diabetes Linked to Heart Disease, Shorter Life
August 14, 2018 - SMURF1 provides targeted approach to preventing cocaine addiction relapse
August 14, 2018 - Genetic testing pushed for hereditary high cholesterol disease
August 14, 2018 - Researchers discover new genes involved in Alzheimer’s Disease
August 14, 2018 - Medicare to overhaul ACOs but critics fear fewer participants
August 14, 2018 - Adolescent health projects receive meager percentage of global funding, study finds
August 14, 2018 - University Hospitals Seidman Cancer Center launches new CAR-T therapy trial
August 14, 2018 - In the addiction battle, is forced rehab the solution?
August 14, 2018 - Busting myths about milk – Scope
August 14, 2018 - Platelet-rich plasma does not enhance cartilage formation capabilities of stem cells
August 14, 2018 - Wearable devices and ‘mhealth’ technology emerge as promising tools for better health
August 14, 2018 - Johns Hopkins expert panel develops first set of operation-specific opioid prescribing guidelines
August 14, 2018 - Clinical study suggests new treatment direction for head and neck cancer in heavy smokers
August 14, 2018 - Phase 2 Clinical Data Published Showing Summit’s Ridinilazole Preserved Gut Microbiome of Patients with CDI
August 14, 2018 - Cardiac progenitor cells undergo a cell fate switch to build coronary arteries
August 14, 2018 - Study identifies potential guidance to treat gastric cancer patients
August 14, 2018 - Revealed: The molecular mechanism underlying hypertrophic cardiomyopathy, or “workaholic heart”
August 14, 2018 - Diabetes epidemic in Guatemala driven by aging, not obesity
August 14, 2018 - New technology shows potential to streamline the analysis of proteins
August 14, 2018 - Rethinking the stroke rule ‘time is brain’
August 14, 2018 - Incidence of coronary artery compression in children may be more common than previously thought
August 14, 2018 - Study helps to better understand disease caused by Alpha-1 antitrypsin deficiency
August 14, 2018 - AI platform identifies acute neurological illnesses faster than human diagnosis
August 14, 2018 - American College of Rheumatology receives grants to support development of lupus clinical trials
August 14, 2018 - New study explains why women get more migraines than men
August 14, 2018 - American Heart Association Urges Screen Time Limits for Youth
August 14, 2018 - Brief interventions during routine care reduce alcohol use among men with HIV
August 14, 2018 - New genome analysis could identify people at higher risk of common deadly diseases
August 14, 2018 - NIH grant for Mount Sinai to study use of inhaled corticosteroids for treatment of sickle cell disease
August 14, 2018 - Daicel supplies free nanodiamond samples to international researchers
August 14, 2018 - Switching anti-psychotic drugs in first-episode schizophrenia patients does not improve clinical outcomes
August 14, 2018 - Study to examine whether modulating gut bacteria can improve cardiac function in heart failure patients
August 14, 2018 - AI technology could hold key to improving health services
August 14, 2018 - One out of two children not getting enough nutrients needed for their health
August 14, 2018 - Mono-antiplatelet therapy after aortic heart valve replacements may work as well as two drugs
August 14, 2018 - Aid-in-dying patient chooses his last day
August 14, 2018 - Exercise Really Can Chase Away the Blues, to a Point
August 14, 2018 - Surgical mesh implants may cause autoimmune disorders
August 14, 2018 - Researchers develop revolutionary zebrafish model to gain more insight into bone diseases
August 14, 2018 - Researchers discover secret communication hotline between breast cancers and normal cells
August 14, 2018 - Study examines how a person adapts to visual field loss after stroke
August 14, 2018 - Researchers show how specialized nucleic acid-based nanostructures could help target cancer cells
August 14, 2018 - Reducing opioid prescriptions for one operation can also spill over to other procedures
August 14, 2018 - E-cigarettes not so safe but still better than cigarettes
August 14, 2018 - Researchers find link between common ‘harmless’ virus and cardiovascular damage
August 14, 2018 - Initiation of PIMs associated with higher risk of fracture-specific hospitalizations and mortality
August 14, 2018 - Genetically modified mosquitoes and special bed nets help tackle deadly diseases
Using AFM to characterize cancer cells

Using AFM to characterize cancer cells

image_pdfDownload PDFimage_print

An interview with Dr. Jim Gimzewski, UCLA conducted by April Cashin-Garbutt, MA (Cantab)

Can you please give a brief introduction to your research characterizing cancer cells?

My name is James Gimzewski and I am a distinguished professor at UCLA. I’m in the Chemistry and Biochemistry department, but I am also heavily involved in the California NanoSystems Institute at UCLA. We were probably the first to pioneer the idea of what is now known as mechanobiology – the study of the mechanical properties of cancer cells as a potential diagnostic tool.

Credit: Mikheiken, A. et al. DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle. Nat Commun. 8, 1665 (2017)

How has AFM allowed you to measure cell softness and why is this important?

One of the beautiful things about AFM is that it is a mechanical tool. In the same way a doctor would feel the skin or tissue of a patient, AFM allows that to be done on the nanoscale and it is unique in that respect.

What challenges did you have to overcome in terms of making sure the cells didn’t burst?

We know a lot about AFM technology. At the beginning, AFM was not very good at biology at all. However, we are experts in nanotechnology and by working with people who are experts in cells, and bringing the two fields together, we could conduct a lot of research and decrease forces, for instance, and understand things about the tip, which enabled us to develop this ability.

Mechanobiology and AFM from AZoNetwork on Vimeo.

 

Is it known why metastatic cancer cells are extremely soft compared to normal cells despite similarities in appearance?

I work with people at UCLA who are experts in pathology and there are subtle differences in certain morphologies and so on in cancer cells, but it is not always possible to tell that.

We have an orthogonal tool that when used to look at the mechanobiology, shows us that the metastatic cancer cells are about 10 times softer than some equivalent mesothelial cells that would be in a sample.

Will it be possible to use AFM in the clinical environment as a diagnostic tool?

I have been working with Jianya Rao who is the head of pathology and specializes in cancer diagnosis. Together, we are working on a new type of tool, which is an automated platform that would allow, for instance, medical people to use the microscope and automatically detect cancer cells. That is the long-term goal of our work − being able to translate that into a medical setting.

How has AFM directly advanced or helped your research?

I have always been interested in nanomechanics. I started studying nanotechnology in 1983 at IBM and then I moved to UCLA in 2001. I started to think we could use this nanomechanical tool as a unique way of looking at biology and that led me into medicine. It is an essential tool and it keeps improving by getting faster and more automated. I have a rosy view for the future of its use in medicine.

What is the biggest impact that AFM has made to the biological and nanomedicine research fields?

There are numerous ones. Of course, I particularly like the ability to study mechanobiology, but I am also interested in imaging and high-speed AFM. We have been able to image molecular motors running along actin filaments. High speed allows you to take videos of life at the nanoscale and I think they are marvelous. More things will emerge in the future.

Credit: Mikheiken, A. et al. DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle. Nat Commun. 8, 1665 (2017)

How has Bruker technology helped or advanced AFM in biological research?

They are one of the leading companies, particularly in the bio field. Personally, together with the California NanoSystems Institute, we have a very close relationship. They are in Santa Barbara and we are in Los Angeles.

They go out of their way to tweak and modify the machine according to who is working in bio and medical needs. I think that has been a very important aspect and, in particular, Chanmin Su is an absolute wizard at putting things together in a very short space of time!

What is the importance of meetings, like the AFM BioMed Conference, to you and the AFM research community?

Just today, I have learned so much. I try to keep up with the literature. In the old days, there were perhaps 50 AFM researchers in the world, whereas today, there are thousands of AFM researchers. This is therefore a great opportunity to get together, talk to people, find out the latest developments and even come up with new ideas and ideas for collaboration.

This is a particularly good meeting. It is also not too big; it doesn’t have parallel sessions and so on, so you can really have a one-to-one relationship with a lot of the people who are talking here or presenting posters.

What direction do you see, or would like to see, AFM going in the next five years? What do you see as the next big thing for AFM?

I would like to see a couple of things. I would like to see the speed keep increasing. At the moment, just some small demonstrations have shown 1,000 frames a second is possible under certain conditions, but it would be good if under all biological conditions, we could have really fast videos and watch the mechanics of life in motion. I think that is one direction.

The other direction concerns the fact that AFMs tend to be general purpose. They can look at cells and at strands of DNA. They can do lots of things, but that comes at a price. I would like to see more purpose-built AFMs − ones that can map DNA and are designed for that high speed. In the field of medical diagnosis, it would be useful to have machines that are much easier to operate so that a medical technician could run them.

A third direction that is important to me is to keep reducing the forces down to piconewtons. We typically talk about nanonewtons in AFM, but I would like to see a move to very low perturbations in terms of the forces.

Those are the three things that I personally would like to see happen and I think they will happen.

Where can readers find more information?

About Dr. Jim Gimzewski

Dr. James K. Gimzewski is a distinguished professor of Chemistry at the University of California, Los Angeles and member of the California NanoSystems Institute. His current research includes nanoscale science of biological systems, fabrication of atomic switch networks to emulate the neocortex and the mechanobiology of cells, exosomes and actin bound with neuronal binding proteins.

Dr. Gimzewski is a Fellow of the Royal Society and Royal Academy of Engineering. He has received honorary Doctorates (DSc hc & PhD hc) from the University of Aix II in Marseille, France and from the University of Strathclyde, Glasgow. He is a PI at Materials Nanoarchitectonics  (MANA)  in the National Institute of Materials Science (NIMS), Tsukuba, Japan. He is also Scientific director of the UCLA Art|Sci Center.

Prior to joining the UCLA faculty in 2001, he was a group leader at IBM Zurich Research Laboratory, where he conducted research in nanoscale science and technology for more than 18 years. Dr. Gimzewski pioneered research on mechanical and electrical contacts with single atoms and molecules using scanning tunneling microscopy (STM).

Tagged with:

About author

Related Articles