Breaking News
February 21, 2018 - Combo Bests Targeted Agent in mRCC
February 21, 2018 - Researchers discover brain pathway that dissociates opioid addiction from analgesia
February 21, 2018 - Scientists uncover how newly discovered gene helps grow blood vessels
February 21, 2018 - Brain’s quality control process holds clues to obesity’s roots
February 21, 2018 - Researchers to study whether menstrual cups can help prevent vaginal infections
February 21, 2018 - MS patients who feel stigmatized more likely to suffer from depression
February 21, 2018 - Vitamin D supplementation during pregnancy could protect against childhood obesity
February 21, 2018 - Lower-Quality Medical Tx Might Have Skewed Key PCI vs CABG Trials
February 21, 2018 - Love and fear are visible across the brain instead of being restricted to any brain region
February 21, 2018 - Adults with congenital heart disease have increased risk for dementia, study finds
February 21, 2018 - Clinical trial studying type 1 diabetes reaches full enrollment
February 21, 2018 - Father’s stress affects the brain development of offspring, mice study shows
February 21, 2018 - ESRD Death Declines in Vasculitis Patients
February 21, 2018 - Taking ibuprofen for long periods found to alter human testicular physiology
February 21, 2018 - Google AI device could predict a person’s risk of a heart attack
February 20, 2018 - FDA Approves Domestic Source for Tc-99m Isotopes
February 20, 2018 - Sanofi rejects refund demand faces Philippine suit over dengue vaccine (Update)
February 20, 2018 - Researchers discover that activation of specific enzyme may help suppress tumor metastasis
February 20, 2018 - Blood or marrow transplantation survivors have higher risk of cognitive impairment
February 20, 2018 - Booze Beats Pot at Being Unhealthy: Oregon Poll
February 20, 2018 - Morning Break: ’20 Years Late’; Drugs in the Dirt; Catching Flu in the Dorm
February 20, 2018 - Another piece to the puzzle in naked mole rats’ long, cancer-free life
February 20, 2018 - Scientists identify four viruses that can produce insulin-like hormones
February 20, 2018 - New e-Health solution developed to prevent cardiovascular disease, dementia in senior citizens
February 20, 2018 - New genetic risk score could help guide screening decisions for prostate cancer
February 20, 2018 - Study finds higher risk of stroke among blacks with atrial fibrillation than whites
February 20, 2018 - Physical activity could be used as strategy for diabetes prevention
February 20, 2018 - Researchers develop sensing method for early detection of cancer and diabetes
February 20, 2018 - New wearable electronics could be game-changer for stroke rehabilitation
February 20, 2018 - Immune history influences person’s response to flu vaccine
February 20, 2018 - Research findings could help develop new drugs to prevent, treat dry eye disease
February 20, 2018 - Serenity Now! Learn to Have Patience with Patients
February 20, 2018 - Computer simulation addresses the problem of blood clotting
February 20, 2018 - Women with type 1 diabetes not protected against coronary artery disease
February 20, 2018 - Persistent bloating can be a sign of ovarian cancer, warns charity
February 20, 2018 - Trump administration proposes rule to loosen curbs on short-term health plans
February 20, 2018 - Key protein involved in epigenetic regulation of gene expression guides skin cell renewal
February 20, 2018 - Heart attack symptoms often missed in women
February 20, 2018 - Diagnosis of celiac disease takes 3.5 years for patients who do not report GI symptoms
February 20, 2018 - Study reveals functional dynamics of ion channels
February 20, 2018 - Study explores link between mortality risk and combustible tobacco use
February 20, 2018 - ‘She Trusted Me, and I’d Turned Her Away’
February 20, 2018 - AbbVie and Voyager Therapeutics collaborate to develop new treatments for tauopathies
February 20, 2018 - Fast food makes the immune system more aggressive in the long term
February 20, 2018 - Therapeutic target for glaucoma could have treatment ramifications for Alzheimer’s and Parkinson’s
February 20, 2018 - Overcoming Negative Reviews | Medpage Today
February 20, 2018 - MyD88—villain of allergies and asthma
February 20, 2018 - Food scientists develop rapid screening technique to detect pesticide residue in vegetables
February 20, 2018 - Lab-grown cerebellar cells may help explain how ASD develops at molecular level
February 20, 2018 - Scientists explore connection between bad sleep habits and stiff blood vessels
February 20, 2018 - New Treatment Apalutamide (Erleada) Approved for Prostate Cancer That Resists Hormone Therapy
February 20, 2018 - Do You Really Need My Signature on That?
February 20, 2018 - HIV-1 genetic diversity is higher in vaginal tract than in blood during early infection
February 20, 2018 - Diabetes does not increase work-loss years due to early retirement
February 20, 2018 - Researchers aim to find out how PTSD affects decisions of police
February 20, 2018 - UH Cleveland Medical Center explores novel treatments for uterine fibroids
February 20, 2018 - Flu Vax Efficacy 25% Against Predominant H3N2 Strain So Far
February 20, 2018 - HIV screening most optimal at 25 years of age if no risk factors
February 20, 2018 - Loyola Medicine primary care physician offers advice to minimize risk of flu
February 20, 2018 - Safe sleep recommendations for parents that may help reduce child’s risk of SUID
February 20, 2018 - Why Do So Few Docs Have Buprenorphine Waivers?
February 20, 2018 - Low levels of alcohol good for the brain
February 20, 2018 - Experimental treatment improves invisible symptoms of a man with spinal cord injury
February 20, 2018 - Myriad’s EndoPredict offers better prediction of breast cancer recurrence, analysis shows
February 20, 2018 - Researchers identify fifteen genes that determine our facial features
February 20, 2018 - Morning Break: New Health IT Player; Luxturna No Bargain; Nuclear Freakout
February 20, 2018 - How does it compare? Hospice care at home, at assisted living facility, at nursing home
February 19, 2018 - Scientists develop water-soluble warped nanographene for bioimaging
February 19, 2018 - It’s Not Your Imagination: You’re Hungrier After Losing Weight
February 19, 2018 - Antihypertensive Use At Delivery Rising in Preeclampsia
February 19, 2018 - A centuries-old math equation used to solve a modern-day genetics challenge
February 19, 2018 - Liquid biopsies could be used as new predictive marker for metastatic TNBC
February 19, 2018 - Russian researchers develop new multi-layered biodegradable scaffolds
February 19, 2018 - Are ‘Vaccine Skeptics’ Responsible for Flu Deaths?
February 19, 2018 - Hidden genetic effects behind immune diseases may be missed, study suggests
February 19, 2018 - Emergency nurses experience regular verbal and physical abuse
February 19, 2018 - Study sheds light on biology that guides behavior across different stages of life
February 19, 2018 - Morning Break: Transgender Breast Feeding; Brazilian ‘Pro-Vaxxers’; Post-Stroke Exercise
February 19, 2018 - Meningitis vaccination strategy in Africa found to be effective, economical
February 19, 2018 - Researchers uncover how excess calcium may influence development of Parkinson’s disease
Using AFM to characterize cancer cells

Using AFM to characterize cancer cells

image_pdfDownload PDFimage_print

An interview with Dr. Jim Gimzewski, UCLA conducted by April Cashin-Garbutt, MA (Cantab)

Can you please give a brief introduction to your research characterizing cancer cells?

My name is James Gimzewski and I am a distinguished professor at UCLA. I’m in the Chemistry and Biochemistry department, but I am also heavily involved in the California NanoSystems Institute at UCLA. We were probably the first to pioneer the idea of what is now known as mechanobiology – the study of the mechanical properties of cancer cells as a potential diagnostic tool.

Credit: Mikheiken, A. et al. DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle. Nat Commun. 8, 1665 (2017)

How has AFM allowed you to measure cell softness and why is this important?

One of the beautiful things about AFM is that it is a mechanical tool. In the same way a doctor would feel the skin or tissue of a patient, AFM allows that to be done on the nanoscale and it is unique in that respect.

What challenges did you have to overcome in terms of making sure the cells didn’t burst?

We know a lot about AFM technology. At the beginning, AFM was not very good at biology at all. However, we are experts in nanotechnology and by working with people who are experts in cells, and bringing the two fields together, we could conduct a lot of research and decrease forces, for instance, and understand things about the tip, which enabled us to develop this ability.

Mechanobiology and AFM from AZoNetwork on Vimeo.

 

Is it known why metastatic cancer cells are extremely soft compared to normal cells despite similarities in appearance?

I work with people at UCLA who are experts in pathology and there are subtle differences in certain morphologies and so on in cancer cells, but it is not always possible to tell that.

We have an orthogonal tool that when used to look at the mechanobiology, shows us that the metastatic cancer cells are about 10 times softer than some equivalent mesothelial cells that would be in a sample.

Will it be possible to use AFM in the clinical environment as a diagnostic tool?

I have been working with Jianya Rao who is the head of pathology and specializes in cancer diagnosis. Together, we are working on a new type of tool, which is an automated platform that would allow, for instance, medical people to use the microscope and automatically detect cancer cells. That is the long-term goal of our work − being able to translate that into a medical setting.

How has AFM directly advanced or helped your research?

I have always been interested in nanomechanics. I started studying nanotechnology in 1983 at IBM and then I moved to UCLA in 2001. I started to think we could use this nanomechanical tool as a unique way of looking at biology and that led me into medicine. It is an essential tool and it keeps improving by getting faster and more automated. I have a rosy view for the future of its use in medicine.

What is the biggest impact that AFM has made to the biological and nanomedicine research fields?

There are numerous ones. Of course, I particularly like the ability to study mechanobiology, but I am also interested in imaging and high-speed AFM. We have been able to image molecular motors running along actin filaments. High speed allows you to take videos of life at the nanoscale and I think they are marvelous. More things will emerge in the future.

Credit: Mikheiken, A. et al. DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle. Nat Commun. 8, 1665 (2017)

How has Bruker technology helped or advanced AFM in biological research?

They are one of the leading companies, particularly in the bio field. Personally, together with the California NanoSystems Institute, we have a very close relationship. They are in Santa Barbara and we are in Los Angeles.

They go out of their way to tweak and modify the machine according to who is working in bio and medical needs. I think that has been a very important aspect and, in particular, Chanmin Su is an absolute wizard at putting things together in a very short space of time!

What is the importance of meetings, like the AFM BioMed Conference, to you and the AFM research community?

Just today, I have learned so much. I try to keep up with the literature. In the old days, there were perhaps 50 AFM researchers in the world, whereas today, there are thousands of AFM researchers. This is therefore a great opportunity to get together, talk to people, find out the latest developments and even come up with new ideas and ideas for collaboration.

This is a particularly good meeting. It is also not too big; it doesn’t have parallel sessions and so on, so you can really have a one-to-one relationship with a lot of the people who are talking here or presenting posters.

What direction do you see, or would like to see, AFM going in the next five years? What do you see as the next big thing for AFM?

I would like to see a couple of things. I would like to see the speed keep increasing. At the moment, just some small demonstrations have shown 1,000 frames a second is possible under certain conditions, but it would be good if under all biological conditions, we could have really fast videos and watch the mechanics of life in motion. I think that is one direction.

The other direction concerns the fact that AFMs tend to be general purpose. They can look at cells and at strands of DNA. They can do lots of things, but that comes at a price. I would like to see more purpose-built AFMs − ones that can map DNA and are designed for that high speed. In the field of medical diagnosis, it would be useful to have machines that are much easier to operate so that a medical technician could run them.

A third direction that is important to me is to keep reducing the forces down to piconewtons. We typically talk about nanonewtons in AFM, but I would like to see a move to very low perturbations in terms of the forces.

Those are the three things that I personally would like to see happen and I think they will happen.

Where can readers find more information?

About Dr. Jim Gimzewski

Dr. James K. Gimzewski is a distinguished professor of Chemistry at the University of California, Los Angeles and member of the California NanoSystems Institute. His current research includes nanoscale science of biological systems, fabrication of atomic switch networks to emulate the neocortex and the mechanobiology of cells, exosomes and actin bound with neuronal binding proteins.

Dr. Gimzewski is a Fellow of the Royal Society and Royal Academy of Engineering. He has received honorary Doctorates (DSc hc & PhD hc) from the University of Aix II in Marseille, France and from the University of Strathclyde, Glasgow. He is a PI at Materials Nanoarchitectonics  (MANA)  in the National Institute of Materials Science (NIMS), Tsukuba, Japan. He is also Scientific director of the UCLA Art|Sci Center.

Prior to joining the UCLA faculty in 2001, he was a group leader at IBM Zurich Research Laboratory, where he conducted research in nanoscale science and technology for more than 18 years. Dr. Gimzewski pioneered research on mechanical and electrical contacts with single atoms and molecules using scanning tunneling microscopy (STM).

Tagged with:

About author

Related Articles