Breaking News
December 17, 2017 - Teens Acting Badly? Smog Could Be to Blame
December 17, 2017 - FDA Says ‘Yes’ to Short-Acting Insulin Admelog
December 17, 2017 - Vaping popular among teens; opioid misuse at historic lows
December 17, 2017 - Lower Urinary Symptoms Occur in Almost All Patients with SSc
December 17, 2017 - Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)
December 16, 2017 - Butler Hospital launches international Alzheimer’s disease prevention study
December 16, 2017 - iMedicalApps: Virtual Reality Boosts Self-Confidence for Med Students
December 16, 2017 - Researchers validate five new genes responsible for Amyotrophic Lateral Sclerosis
December 16, 2017 - New genetic analysis of candidiasis reveals surprising fungal sex secrets
December 16, 2017 - New high precision machine-learning model could help accelerate drug discovery
December 16, 2017 - Groundbreaking gene therapy trial brings cure for hemophilia closer
December 16, 2017 - Racial Differences Seen in IgG4 Disease
December 16, 2017 - Treacher Collins Syndrome
December 16, 2017 - New approach to tracking how deadly ‘superbugs’ travel could slow their spread
December 16, 2017 - Muscle paralysis may promote breakdown of bones
December 16, 2017 - WSU scientists create injectable dye to track progression of diseases
December 16, 2017 - Kaiser Permanente delivers clot-busting drugs to stroke patients more than twice as fast as national rates
December 16, 2017 - Some Great Holiday Foods for Weight Loss
December 16, 2017 - Shared Decision-Making Strategies for Lung Ca Screening Get High Marks
December 16, 2017 - Lactic acid bacteria can protect against Influenza A virus, study finds
December 16, 2017 - Cancer immunotherapy’s effectiveness may depend on patient’s genetic makeup
December 16, 2017 - Researchers explore patient-doctor conversations, best practices linked to opioid tapering
December 16, 2017 - ‘Virtual child’ to help professionals learn key techniques to treat children with autism
December 16, 2017 - IU scientists discover way to make drug treatment more successful against malaria
December 16, 2017 - Prostate cancer researchers find significant disparities between two liquid biopsy providers
December 16, 2017 - ED-Diagnosed Lung Ca Patients Worse Off: Clin Onc News Report
December 16, 2017 - Calcium in Urine Test: MedlinePlus Lab Test Information
December 16, 2017 - Pregnancy-related conditions taken together leave moms—and dads—at risk
December 16, 2017 - Research uncovers mechanism implicated in defective function of tumor-associated dendritic cells
December 16, 2017 - OncoBreak: Stubborn Racial Disparities; Paid Medical Leave & Chemo; DIY Gene Tests
December 16, 2017 - Critical link between obesity and diabetes has been identified
December 16, 2017 - Transfusion dependence reduces access to high-quality end-of-life care for leukemia patients
December 16, 2017 - Porvair and Suzhou Tianlong Bio to develop epigenetic analysis technologies
December 16, 2017 - FDA Approves Ixifi (infliximab-qbtx), a Biosimilar to Remicade
December 16, 2017 - Morning Break: Trump to Get Check-Up; Cancerous Transplant; Death Knell for MIPS?
December 16, 2017 - First transcatheter implant for diastolic heart failure successful
December 16, 2017 - ‘Sushi-like’ nanodiscs provide structural snapshots of misfolding proteins
December 16, 2017 - Inherited gene variation may be to blame for poor survival of patients with early-onset breast cancer
December 16, 2017 - Sign-up deadline is Friday, but some people may get extra time
December 16, 2017 - Higher Booze Taxes Might Pay Off for Public Health
December 16, 2017 - Regular Activity in Midlife Spares Joints in Women
December 16, 2017 - Rain May Not Cause Achy Joints After All: MedlinePlus Health News
December 16, 2017 - MedDiet adherence doesn’t affect acute heart failure mortality
December 16, 2017 - HKBU experts develop new generation of smart anti-cancer drug molecules
December 16, 2017 - Chronic Kidney Disease Audit finds wide variations in coding of CKD patients in primary care
December 16, 2017 - Scientists use nanoparticles to fight Mucoviscidosis
December 16, 2017 - Increasing physical activity decreases risk of death from lymphoma
December 16, 2017 - Fear compromises the health, well-being of immigrant families, survey finds
December 16, 2017 - Rejected antibiotic candidate could be worth a second look, research finds
December 16, 2017 - Is Nation on the Right Track to Combat Opioid Crisis?
December 16, 2017 - Arthritis No Longer Just a Disease of the Old: MedlinePlus Health News
December 16, 2017 - Study reveals biology behind why muscle stem cells respond differently to aging or injury
December 16, 2017 - Family members without inherited mutation have increased risk of melanoma
December 16, 2017 - Researchers reveal previously unknown mechanism that inhibits cells’ ability to develop into tumors
December 16, 2017 - Studies highlight potential of fMRI applications to detect, treat epilepsy in children
December 16, 2017 - Active surveillance proposed as first-line approach to manage patients with low-risk PMC of the thyroid
December 16, 2017 - Patients’ life values affect their attendance at medical treatment for pelvic-floor dysfunction
December 16, 2017 - Experts consider hazards of antibiotic resistances to be high
December 16, 2017 - Study finds erectile dysfunction as risk factor for early cardiovascular disease
December 16, 2017 - Amber-tinted glasses may reduce insomnia severity
December 16, 2017 - Arthritis Drug Seen Lowering GvHD Risk
December 16, 2017 - Atoh1, a potential Achilles’ heel of Sonic Hedgehog medulloblastoma
December 15, 2017 - Cornell engineers develop new method to measure vital signs using radio waves
December 15, 2017 - Rutgers studies highlight need for salon clients, workers to protect themselves from health risks
December 15, 2017 - FDA Approves Nucala (mepolizumab) for Eosinophilic Granulomatosis with Polyangiitis (Churg-Strauss Syndrome)
December 15, 2017 - Morning Break: CVS Buying Aetna; Uterus Transplant Baby; Your Brain on Drugs, Redux
December 15, 2017 - Social phobia linked to autism and schizophrenia
December 15, 2017 - Timestrip technology helping to prevent missed vaccinations
December 15, 2017 - Researchers win NIH grants for Alzheimer’s research on Amish resilience and rapid onset
December 15, 2017 - Mitochondrial error-correction mechanism essential for energy production of cells
December 15, 2017 - New report reveals steep rise in lung disease admissions to emergency departments during winter
December 15, 2017 - Study finds social stigma as barrier to successful treatment of children with HIV in Ethiopia
December 15, 2017 - Health Tip: Keep Gift-Giving Stress Under Wraps
December 15, 2017 - Long Stoppage of Bisphosphonates Tied to More Fractures
December 15, 2017 - Triglycerides Test: MedlinePlus Lab Test Information
December 15, 2017 - Study shows interventions, though few, can be effective for students with high-functioning autism
December 15, 2017 - Higher blood sugar during first trimester of pregnancy increases child’s risk of congenital heart defect
December 15, 2017 - Study tests accuracy of laboratory-developed cancer tests and FDA-approved companion diagnostics
December 15, 2017 - Extracellular vesicles can be used to effectively delay progression of kidney damage
December 15, 2017 - Targeted lung cancer treatments may benefit smokers and non-smokers alike
Researchers unlock genetic processes underlying cancer

Researchers unlock genetic processes underlying cancer

image_pdfDownload PDFimage_print

For many, breast cancer is more than just a disease – it’s personal. One in eight women will be diagnosed with breast cancer at some point in their lives. But through new discoveries at the genetic level, the personal nature of cancer will eventually be what helps to beat it.

One key to understanding cancer lies in the stability of the genome,” says Wolf-Dietrich Heyer, Department of Microbiology and Molecular Genetics chair and co-leader of the Molecular Oncology Program at the UC Davis Comprehensive Cancer Center.

A healthy individual has a system of checks and balances that curtail cells’ irregular growth. But changes occurring during a person’s lifetime, including inherited changes and those induced by environmental exposure, alter the body’s normal blueprint and cause cancer.

Many genes, as part of regular maintenance within the body, are responsible for repairing damaged DNA. Through a process called homologous recombination, information from healthy DNA molecules is used as a template to heal broken DNA strands.

“Recombination works like accessing a backup version when a file on your computer is compromised,” Heyer says. “Referencing this genetic backup copy enables high-fidelity DNA repair.”

Proteins involved in recombination are constantly directing repair of cells’ genetic material, which becomes damaged over time. They serve as genetic guardians, reinforcing a healthy blueprint for the body. It is estimated that each day, every cell experiences tens of thousands of damaging events that require DNA repair. These guardians stay busy and are constantly on the alert.

While the guardians are tasked with repairing DNA damage, they can also become damaged themselves. When they become altered or damaged, genetic changes, called mutations, accumulate at an alarming pace. Mutations in two very different guardian genes, BRCA1 and BRCA2, lead to a significantly elevated cancer risk.

According to the National Cancer Institute, 55 to 65 percent of women who inherit the BRCA1 mutation will develop breast cancer by age 70, while 39 percent will develop ovarian cancer. Together, deficiency mutations in these two genes constitute the highest risk factor for familial breast and ovarian cancer.

There are many types of risks that can increase the likelihood of these cancers in women. Fortunately, the consistency of BRCA1 and BRCA2 deficiency mutations in cancer patients creates an opening that UC Davis researchers have seized to gain understanding about their roles in preventing and treating cancer.

Understanding cancer, one building block at a time

Due to the complexity of the proteins produced by the genes, uncovering the characteristics of BRCA1 and BRCA2 has been a decades-long process. BRCA2 contains 3,418 amino acids, making it roughly 10 times larger than an average protein, Heyer says. The larger the protein, the more challenging it is to understand. And because genes mutate in unpredictable ways, they also end up producing many different variations of proteins.

“There may be only a single person on the planet who has a particular variant,” says Heyer, “and with a protein of this size, it is very difficult to predict what impact that change has, leaving patients and doctors in the dark.”

Insights into the nature of BRCA1 and BRCA2 began with identifying similar protein activities in bacteria and yeast, simpler organisms which share a common ancestor with humans. Professor Stephen Kowalczykowski, Department of Microbiology and Molecular Genetics, has devoted his research career to understanding the mechanisms of the proteins responsible for recombination.

“Without the knowledge derived from bacteria, we would know that BRCA1 and BRCA2 mutations exist, but wouldn’t know what they do nor how to treat them,” Kowalczykowski says. “What’s been interesting and exciting about this is the ability to take what has been a very abstract system study in bacteria and apply what we learned there. It educates us about the processes in humans.”

Through long-term and painstakingly detailed research, Kowalczykowski has sought to replicate the cellular processes of DNA repair in a lab setting. With a sophisticated microscope, Kowalczykowski views live interactions of individual proteins functioning on single molecules of DNA.

“There was never one defining moment,” says Kowalczykowski. “Every five or 10 years you would come to the realization that something in bacteria is identical in humans. Once you realize the universality of the underlying process you realize that everything you learned in bacteria applied to humans, but those human cells are just more complicated.

Personalized medicine, the future of cancer therapies

Heyer, Kowalczykowski and dozens of other UC Davis researchers’ discoveries are creating the framework for the future of cancer therapies. By describing the behaviors of cancer-related genes such as BRCA1 and BRCA2, it will become possible to create specific profiles to target tumor growth. One day, physicians will be able to prescribe a customized treatment plan for each patient, based on their genetic profile.

“Many tumors, once they progress, accumulate sporadic mutations,” Kowalczykowski says. “If you knew what the mutations were in a particular patient’s cancer you could personalize a treatment. It’s all a knowledge-based form of decision- making. Compared to 10 to 20 years ago, it’s easier to find the base of mutation; it’s easy to screen once you have descriptions of mutation and DNA repair genes. How we treat these mutations, that’s the next generation of discovery.”

The main approaches of cancer therapy are surgery, radiation and chemotherapy, often associated with severe side effects. Personalized therapies based on the individual genetic profile provide an alternative, or supplement, to chemotherapy and radiation treatments, which indiscriminately kill healthy cells and further damage the guardian genes’ ability to repair DNA.

These targeted therapies can seek out cancerous cells based on the specific, individual genetic makeup. So while DNA repair defects caused by mutations in BRCA1 and BRCA2 predispose individuals to cancer, they also make tumors uniquely susceptible to certain targeted treatments that have little effect on normal cells.

It turns out that BRCA-deficient cancer cells are sensitive to the blockage of a particular repair enzyme, Poly ADP Ribose Polymerase, or PARP for short. PARP is required for the repair of single-stranded nicks in DNA, and when left untreated, these nicks are processed into far more damaging DNA double-stranded breaks.

As recombination is the primary pathway to repair such breaks under these conditions, inhibiting PARP in BRCA-deficient cells very effectively kills tumor cells. PARP inhibitors are the first DNA-repair targeted drug approved by the Food and Drug Administration for the treatment of cancer.

For specific cases, it remains to be seen whether PARP inhibitors can be expanded to patients with other genetic defects in addition to BRCA mutations. But this groundbreaking discovery demonstrates that DNA repair genes have the ability to become an Achilles’ heel in certain cancers, making them an excellent therapeutic tool to kill tumor cells.

“To have so much biological knowledge that each person can be treated in a personalized way, that is the long-term strategy,” says Heyer. “Our effort is to establish the basic science and help translate these insights into the cancer clinic.”

While DNA repair might not be a silver bullet for all cancers, it is a leading methodology that aims to address the shortcomings of traditional treatments. Personalized medicine approaches based on an individual’s genetic profile are already saving lives by revealing predispositions to certain types of cancer before tumors begin to form.

As UC Davis researchers continue to investigate the genetic processes underlying cancer, therapies will shift to become more personalized and patient-specific. New methods will spur increased collaboration between researchers and physicians, improving a working model of feedback that will accelerate cancer treatments and help save lives. And as anyone who has been affected by cancer knows, a personal approach makes all the difference.

Source:

http://ucdmc.ucdavis.edu/publish/news/cancer/12427

Tagged with:

About author

Related Articles