Breaking News
May 26, 2018 - New research shows why babies need to move in the womb
May 26, 2018 - UK steps forward to tackle global antimicrobial resistance
May 26, 2018 - CRISPR-Cas9-based strategy allows researchers to precisely alter hundreds of different genes
May 26, 2018 - UT Southwestern-led researchers find new way to determine prognosis of invasive kidney cancer
May 26, 2018 - Researchers develop film to prevent bacteria from growing on dental retainers and aligners
May 26, 2018 - Mobile health intervention for people with serious mental illness as effective as clinic-based treatment
May 26, 2018 - Vaginal estradiol tablets outperform moisturizers when treating vulvovaginal problems
May 26, 2018 - Researchers call for new genetic tests for congenital diseases
May 26, 2018 - KHN’s ‘What the Health?’ Campaign promises kept, plus ‘nerd reports’
May 26, 2018 - Lung-on-a-chip technology could streamline drug-testing for pulmonary fibrosis
May 26, 2018 - Study finds early antibiotic initiation for majority of premature infants
May 26, 2018 - New environmental monitoring project finds increased numbers of deer ticks in Southern Indiana
May 26, 2018 - Pediatricians Should Advocate for Life Support Training
May 26, 2018 - Cannabidiol significantly reduces seizures in patients with severe form of epilepsy
May 26, 2018 - Allergies can have serious, far-reaching consequences on adolescents
May 26, 2018 - Scientists develop lab-based system to study mechanisms of common liver disease
May 25, 2018 - New guidelines may help pathologists to more accurately classify and diagnose invasive melanoma
May 25, 2018 - Immune cells promote lung cancer metastases by forming clots in tumors, study finds
May 25, 2018 - Can Excess Weight in Toddlers Cause Brain Drain?
May 25, 2018 - Studying insight
May 25, 2018 - Researchers reveal potent new mechanism of action for treatment of IBD
May 25, 2018 - Study shows lack of follow-up care for patients with concussion
May 25, 2018 - Study establishes the importance of haploid cells
May 25, 2018 - Coveted BMJ award bestowed on The Clatterbridge Cancer Center
May 25, 2018 - AACN outlines evidence-based protocols and clinical strategies to manage alarms
May 25, 2018 - Origami inspires researchers to develop new solution for tissue regeneration
May 25, 2018 - Melorheostosis – Genetics Home Reference
May 25, 2018 - Non-addictive pain medication changing therapy for substance use disorders
May 25, 2018 - Delayed lactate measurements in sepsis patients increase risk of in-hospital death
May 25, 2018 - Researchers identify novel epigenetic mutations as cause of neurodevelopmental, congenital disorders
May 25, 2018 - UD researchers examine connection between DNA replication in HPV and cancer
May 25, 2018 - Researchers identify neurons that play key role in aggressive behavior
May 25, 2018 - Snail’s eye inspires new type of RIOCATH urinary catheter
May 25, 2018 - Russian researchers develop high-tech device-transformer for ultrasound examination
May 25, 2018 - Researchers discover unexpected chemosensor pathway for predator odor-evoked innate fear behaviors
May 25, 2018 - Researchers build 3-D printer that offers sweet solution to making detailed structures
May 25, 2018 - Nearly one in three people know someone addicted to opioids
May 25, 2018 - Research suggests link between faulty gene, alcohol, and heart failure
May 25, 2018 - New findings could help fine-tune treatment for cancer patients
May 25, 2018 - New cancer treatment approach targets specific sugar receptors
May 25, 2018 - Skin responsible for uptake of cancer-causing compounds during barbecuing than lungs
May 25, 2018 - Early-onset cannabis use linked to further drug abuse problems
May 25, 2018 - Covered California takes aim at hospital C-section rates
May 25, 2018 - FDA Approves Palynziq (pegvaliase-pqpz) for the Treatment of Adults with Phenylketonuria
May 25, 2018 - Arthritis Glossary
May 25, 2018 - Study links breast cancer to the body’s internal clock
May 25, 2018 - Strenuous exercise in teenage years may protect against height loss later in life
May 25, 2018 - FDA approves novel enzyme therapy for adults with rare and serious genetic disease
May 25, 2018 - New research project aims at developing effective interventions for kids with DLD
May 25, 2018 - Middlemen who save $$ on medicines — but maybe not for you
May 25, 2018 - Study sheds new light on sharp rise in fatal drug overdoses in recent years
May 25, 2018 - Students propose revision of listeriosis guidelines for safer pregnancy
May 25, 2018 - TNFi Exposure In Utero Does Not Up Serious Infection Risk
May 25, 2018 - Organization of cells in the inner ear enables the sense and sensitivity of hearing
May 25, 2018 - Yoga May Be Right Move Against Urinary Incontinence
May 25, 2018 - Drinking recommended amount of milk could protect obese children against metabolic syndrome
May 25, 2018 - New cytokine network can repair tissue damage in the intestine, study finds
May 25, 2018 - Lyme disease researcher dispels misconceptions about ticks and provides prevention tips
May 25, 2018 - Penn researchers find link between social media usage and underage drinking
May 25, 2018 - Unique nanotechnology method to simplify skin disease diagnosis
May 25, 2018 - Study reveals new protective mechanism for tumor cells in breast cancer
May 25, 2018 - FRAME Alternatives Laboratory chosen for major European liver research collaboration
May 25, 2018 - Study shows yogurt may dampen chronic inflammation linked to multiple diseases
May 25, 2018 - Invasive cancers that are born to be bad show detectable differences from harmless tumors
May 25, 2018 - Study identifies new mechanism involved in development of Lou Gehrig’s disease
May 25, 2018 - UAB professor receives award for malaria prevention study in pregnant women in Cameroon
May 25, 2018 - Study provides blueprint of how fruit flies can be used to screen potentially pathogenic human genes
May 25, 2018 - New drug-delivering nanoparticle could offer better way to treat brain tumors
May 25, 2018 - Kessler Foundation scientists compare two tests for assessing learning in individuals with MS
May 25, 2018 - Stroke Symptoms and Diagnosis (Beyond the Basics)
May 25, 2018 - Protein goes against the family to prevent cancer
May 25, 2018 - Drugmakers blamed for blocking generics have milked prices and cost U.S. billions
May 25, 2018 - Speakers announced for National Medicines Symposium 2018
May 25, 2018 - GSK Receives FDA Approval of Arnuity Ellipta for Asthma in Children From 5 Years of Age
May 25, 2018 - Pfizer settles kickback case related to copay assistance for $24m
May 25, 2018 - Nuclear pore functions are essential for T cell survival
May 25, 2018 - Study defines molecular basis to explain connection between mother’s nutrition and infant growth
May 24, 2018 - IHI hosts representatives to develop a national action plan for patient safety
May 24, 2018 - Zika detection breakthrough by University of Queensland
May 24, 2018 - FDA Alert: 95% Ethyl Alcohol Product by Ethanol Extraction: Recall
Critical toxic species behind Parkinson’s disease is glimpsed at work for the first time

Critical toxic species behind Parkinson’s disease is glimpsed at work for the first time

image_pdfDownload PDFimage_print
The study found that a structural core within a toxic tangle of alpha-synuclein protein molecules allows it to insert itself into the wall of a neuron. Credit: Alfonso De Simone

Researchers have glimpsed how the toxic protein clusters that are associated with Parkinson’s Disease disrupt the membranes of healthy brain cells, creating defects in the cell walls and eventually causing a series of events that induce neuronal death.

The study examined what are known as toxic oligomers, clusters of protein molecules that emerge when individual proteins misfold and clump together. In the case of Parkinson’s Disease, the protein involved is called alpha synuclein, which when it is functioning normally plays an important part in signalling in the brain.

The formation and spread of these clusters is thought to be a key component of the underlying molecular mechanisms of this progressive illness. Understanding how they enter and damage cells presents an opportunity to develop new and more effective treatments. But until now, studying how they damage brain cells has been extremely difficult as they are typically unstable. Shortly after forming they either fall apart, or assemble into larger structures that are less damaging to individual cells.

In the new study, academics were able to stabilise oligomers long enough to examine how they damage brain cell walls in unprecedented detail. They identified a specific feature of the oligomer which allows it to latch on to the cell wall, and a “structural core”, which then breaks through.

The research was carried out by an international team of scientists from the UK, Italy and Spain, led by Professor Christopher Dobson, at the University of Cambridge, and Dr Alfonso De Simone, from Imperial College London.

“It is a common property of oligomers that they can damage brain cells once they bind to the surface,” De Simone explained. “It is a bit like if you put a piece of extremely hot metal on to a plastic surface. In a fairly short space of time it will burn a hole through the plastic. The oligomer does something similar when it comes into contact with the cell membrane, and this disrupts the integrity of the membrane, which is the key step in the mechanisms leading to the death of the neuron.”

Dr Giuliana Fusco, a postdoctoral researcher at St John’s College, Cambridge who carried out much of the experimental work for the study while working towards her PhD, said: “Just having this information doesn’t mean that we can now go and make a drug, but obviously if we can understand why these clumps of proteins behave the way they do, we can make faster scientific progress towards treating Parkinson’s Disease. It means we can take a more rational approach to drug discovery.”

Toxic oligomers form at an early stage in the series of events that lead to Parkinson’s Disease, which are believed to begin when alpha synuclein proteins malfunction and begin to stick together. Their emergence is lethal to neuronal function in this context. Once the oligomers have formed, they disperse, and allow the initial toxicity to spread to other cells.

In the study, researchers examined samples in the lab of both toxic and non-toxic forms of oligomeric alpha synuclein oligomers using solid state nuclear magnetic resonance spectroscopy (SSNMR). Recent developments in this technology enabled them to study the oligomers in a level of detail that was not previously possible. The research team characterised different features of the structures, and then studied how these various properties influenced their interactions with sample brain cells taken from rats, as well as additional cells taken from human brain tumours.

The study’s results could, in particular, inform the identification of molecules that can attack these damaging toxins and hence limit their impact. In October this year, the University of Cambridge launched a new Centre for Misfolding Diseases, based in the Department of Chemistry, and geared towards developing therapeutic strategies for a range of conditions including Parkinson’s Disease. Much of its work will build on studies which, like this one, enhance scientific understanding of the fundamental processes that underlie neurodegeneration. From this, molecular “candidates” that might be used in future drugs can be both identified and, if necessary, optimised to target disease.

Professor Dobson, who is both Master of St John’s College, Cambridge, and a Director of the Centre for Misfolding Diseases, said: “One of the really exciting things about this work is that not only has it been possible to define the structure of the critical pathogenic species in a neurodegenerative disorder, but we have also managed to propose a mechanism for its toxicity, providing vital clues for pursuing rational therapeutic strategies..”

The report, Structural basis of membrane disruption and cellular toxicity by a-synuclein oligomers, is published in the journal Science.


Explore further:
Drug discovery: Alzheimer’s and Parkinson’s spurred by same enzyme

More information:
“Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers” Science (2017). science.sciencemag.org/cgi/doi … 1126/science.aan6160

Journal reference:
Science

Provided by:
St John’s College, University of Cambridge

Tagged with:

About author

Related Articles