Breaking News
May 26, 2018 - CRISPR-Cas9-based strategy allows researchers to precisely alter hundreds of different genes
May 26, 2018 - UT Southwestern-led researchers find new way to determine prognosis of invasive kidney cancer
May 26, 2018 - Researchers develop film to prevent bacteria from growing on dental retainers and aligners
May 26, 2018 - Mobile health intervention for people with serious mental illness as effective as clinic-based treatment
May 26, 2018 - Vaginal estradiol tablets outperform moisturizers when treating vulvovaginal problems
May 26, 2018 - Researchers call for new genetic tests for congenital diseases
May 26, 2018 - KHN’s ‘What the Health?’ Campaign promises kept, plus ‘nerd reports’
May 26, 2018 - Lung-on-a-chip technology could streamline drug-testing for pulmonary fibrosis
May 26, 2018 - Study finds early antibiotic initiation for majority of premature infants
May 26, 2018 - New environmental monitoring project finds increased numbers of deer ticks in Southern Indiana
May 26, 2018 - Pediatricians Should Advocate for Life Support Training
May 26, 2018 - Cannabidiol significantly reduces seizures in patients with severe form of epilepsy
May 26, 2018 - Allergies can have serious, far-reaching consequences on adolescents
May 26, 2018 - Scientists develop lab-based system to study mechanisms of common liver disease
May 25, 2018 - New guidelines may help pathologists to more accurately classify and diagnose invasive melanoma
May 25, 2018 - Immune cells promote lung cancer metastases by forming clots in tumors, study finds
May 25, 2018 - Can Excess Weight in Toddlers Cause Brain Drain?
May 25, 2018 - Studying insight
May 25, 2018 - Researchers reveal potent new mechanism of action for treatment of IBD
May 25, 2018 - Study shows lack of follow-up care for patients with concussion
May 25, 2018 - Study establishes the importance of haploid cells
May 25, 2018 - Coveted BMJ award bestowed on The Clatterbridge Cancer Center
May 25, 2018 - AACN outlines evidence-based protocols and clinical strategies to manage alarms
May 25, 2018 - Origami inspires researchers to develop new solution for tissue regeneration
May 25, 2018 - Melorheostosis – Genetics Home Reference
May 25, 2018 - Non-addictive pain medication changing therapy for substance use disorders
May 25, 2018 - Delayed lactate measurements in sepsis patients increase risk of in-hospital death
May 25, 2018 - Researchers identify novel epigenetic mutations as cause of neurodevelopmental, congenital disorders
May 25, 2018 - UD researchers examine connection between DNA replication in HPV and cancer
May 25, 2018 - Researchers identify neurons that play key role in aggressive behavior
May 25, 2018 - Russian researchers develop high-tech device-transformer for ultrasound examination
May 25, 2018 - Researchers discover unexpected chemosensor pathway for predator odor-evoked innate fear behaviors
May 25, 2018 - Researchers build 3-D printer that offers sweet solution to making detailed structures
May 25, 2018 - Nearly one in three people know someone addicted to opioids
May 25, 2018 - Research suggests link between faulty gene, alcohol, and heart failure
May 25, 2018 - New findings could help fine-tune treatment for cancer patients
May 25, 2018 - New cancer treatment approach targets specific sugar receptors
May 25, 2018 - Skin responsible for uptake of cancer-causing compounds during barbecuing than lungs
May 25, 2018 - Early-onset cannabis use linked to further drug abuse problems
May 25, 2018 - Covered California takes aim at hospital C-section rates
May 25, 2018 - FDA Approves Palynziq (pegvaliase-pqpz) for the Treatment of Adults with Phenylketonuria
May 25, 2018 - Arthritis Glossary
May 25, 2018 - Study links breast cancer to the body’s internal clock
May 25, 2018 - Strenuous exercise in teenage years may protect against height loss later in life
May 25, 2018 - FDA approves novel enzyme therapy for adults with rare and serious genetic disease
May 25, 2018 - New research project aims at developing effective interventions for kids with DLD
May 25, 2018 - Middlemen who save $$ on medicines — but maybe not for you
May 25, 2018 - Study sheds new light on sharp rise in fatal drug overdoses in recent years
May 25, 2018 - Students propose revision of listeriosis guidelines for safer pregnancy
May 25, 2018 - TNFi Exposure In Utero Does Not Up Serious Infection Risk
May 25, 2018 - Organization of cells in the inner ear enables the sense and sensitivity of hearing
May 25, 2018 - Yoga May Be Right Move Against Urinary Incontinence
May 25, 2018 - Drinking recommended amount of milk could protect obese children against metabolic syndrome
May 25, 2018 - New cytokine network can repair tissue damage in the intestine, study finds
May 25, 2018 - Lyme disease researcher dispels misconceptions about ticks and provides prevention tips
May 25, 2018 - Penn researchers find link between social media usage and underage drinking
May 25, 2018 - Unique nanotechnology method to simplify skin disease diagnosis
May 25, 2018 - Study reveals new protective mechanism for tumor cells in breast cancer
May 25, 2018 - FRAME Alternatives Laboratory chosen for major European liver research collaboration
May 25, 2018 - Study shows yogurt may dampen chronic inflammation linked to multiple diseases
May 25, 2018 - Invasive cancers that are born to be bad show detectable differences from harmless tumors
May 25, 2018 - Study identifies new mechanism involved in development of Lou Gehrig’s disease
May 25, 2018 - UAB professor receives award for malaria prevention study in pregnant women in Cameroon
May 25, 2018 - Study provides blueprint of how fruit flies can be used to screen potentially pathogenic human genes
May 25, 2018 - New drug-delivering nanoparticle could offer better way to treat brain tumors
May 25, 2018 - Kessler Foundation scientists compare two tests for assessing learning in individuals with MS
May 25, 2018 - Stroke Symptoms and Diagnosis (Beyond the Basics)
May 25, 2018 - Protein goes against the family to prevent cancer
May 25, 2018 - Drugmakers blamed for blocking generics have milked prices and cost U.S. billions
May 25, 2018 - Speakers announced for National Medicines Symposium 2018
May 25, 2018 - GSK Receives FDA Approval of Arnuity Ellipta for Asthma in Children From 5 Years of Age
May 25, 2018 - Pfizer settles kickback case related to copay assistance for $24m
May 25, 2018 - Nuclear pore functions are essential for T cell survival
May 25, 2018 - Study defines molecular basis to explain connection between mother’s nutrition and infant growth
May 24, 2018 - IHI hosts representatives to develop a national action plan for patient safety
May 24, 2018 - Zika detection breakthrough by University of Queensland
May 24, 2018 - FDA Alert: 95% Ethyl Alcohol Product by Ethanol Extraction: Recall
May 24, 2018 - New method allows scientists to study how HIV persists
May 24, 2018 - Study reveals rate of vertebral and non-vertebral fractures in children with leukemia
May 24, 2018 - Whey protein supplementation and physical activity aid women in improving body composition
Druglike molecules produced by gut bacteria can affect gut, immune health

Druglike molecules produced by gut bacteria can affect gut, immune health

image_pdfDownload PDFimage_print
Credit: CC0 Public Domain

Stanford researchers found that manipulating the gut microbe Clostridium sporogenes changed levels of molecules in the bloodstreams of mice and, in turn, affected their health.

Here’s some food for thought: When you lick your Thanksgiving plate clean this week, you’re not just feeding yourself; you’re also providing meals to the trillions of microbes that live in your gut.

And if your dinner includes turkey, a notoriously rich source of the amino acid tryptophan, the gut bacterium Clostridium sporogenes will have the job of breaking down that tryptophan. Then the molecules that are produced by the microbe will flow into your bloodstream in the same way a prescription drug might, interacting with your immune system and changing the biology of the intestines.

Stanford University School of Medicine researchers have used mice to demonstrate how gut bugs could be bioengineered to produce possibly therapeutic changes in the body.

A paper describing their efforts was published online Nov. 22 in Nature. Justin Sonnenburg, PhD, associate professor of microbiology and immunology, and Michael Fischbach, PhD, associate professor of bioengineering, share senior authorship. The lead author is Dylan Dodd, MD, PhD, instructor in pathology.

When the researchers blocked the ability of C. sporogenes to break down tryptophan in mice, levels of certain molecules in their bloodstreams changed. Moreover, the researchers saw physiological changes to the mice’s immune systems and intestines.

“This is a vivid example of not only how the microbiome is affecting things all over your body, but of how we can leverage that to improve health,” said Sonnenburg, using a term for the collection of microbes living on or inside an animal, or in a particular part.

Improving health from the inside

Over the past 15 years, researchers have shown that the composition of a person’s gut microbiome can alter their risk for all sorts of health problems, from diabetes and heart disease to allergies and depression. One reason these tiny microbes have such an outsized effect: They can produce molecules known as metabolites that enter the bloodstream and circulate throughout the body. Pinning down exactly which molecules are produced by which bacteria, however, and how to alter their levels to change health, has been challenging.

Previous studies have shown that just a few bacteria, including C. sporogenes, can break down tryptophan and produce the metabolite known as indolepropionic acid. Studies have also hinted that IPA helps fortify the intestinal wall, letting fewer molecules leak through.

In the new work, the researchers first detailed exactly how C. sporogenes produces IPA from tryptophan. They identified a handful of other compounds also produced in the process—12 metabolites in total, nine of which can accumulate in the blood and three of which are produced only by bacteria. Then, the researchers pinpointed for the first time the genes that C. sporogenes requires for the breakdown of tryptophan and metabolism of the resulting molecules. A gene called fldC, they showed, is required for the production of IPA.

Next, the team gave germ-free mice either wild-type C. sporogenes—with the ability to produce IPA—or a version of the bacteria that lacked fldC. In mice that received the wild-type bacteria, levels of IPA in the bloodstream were around 80 micromolar; in mice that received the engineered version of the bacteria, IPA was undetectable.

Finally, they looked at how altering the levels of IPA affected the mice. Mice with undetectable IPA, they found, had higher levels of immune cells, including neutrophils, classical monocytes and memory T cells. This suggested activation of two branches of the immune system—the innate and adaptive immune system. In addition, the mice with the engineered version of C. sporogenes had more permeable intestines, a defect which is often seen in gut diseases, including inflammatory bowel disease.

Targeting microbes

If the results hold true in humans, said Sonnenburg, it could point toward a new paradigm for treating some diseases: rather than give a compound, such as IPA, physicians may one day be able to tweak levels of bacteria to affect levels of metabolites. For instance, it might be possible to treat inflammatory bowel disease by boosting levels of C. sporogenes and ensuring patients eat enough tryptophan.

“This gives us a specific example of how we can target individual microbes and pathways in the gut to change a person’s health,” Dodd said. “And this is just one example of hundreds or thousands that are likely out there.”

The group next plans to study C. sporogenes and IPA levels in mice with more complex gut microbiomes—rather than germ-free mice—and begin tracking down other metabolites produced by the gut microbes that may have health effects.

“While providing a stunning example of how a single gut microbe, and a single gene within that microbe, can impact host health, IPA is just the tip of the iceberg,” said Fischbach, “The possibility to positively impact human health through microbiome-produced chemicals is tremendous, and we are poised to take big strides and make this a reality.”

Other Stanford authors are Matthew Spitzer, PhD, a former graduate student; graduate students William Van Treuren and Bryan Merrill; postdoctoral scholar Andrew Hryckowian, PhD; life science researcher Steven Higginbottom, PhD; Gary Nolan, PhD, professor of microbiology and immunology; adjunct faculty member Anthony Le; and Tina Cowan, PhD, professor of pathology.


Explore further:
Mice fed tryptophan develop immune cells that foster a tolerant gut

More information:
A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites, Nature (2017). nature.com/articles/doi:10.1038/nature24661

Journal reference:
Nature

Provided by:
Stanford University Medical Center

Tagged with:

About author

Related Articles