Breaking News
May 26, 2018 - FDA authorizes marketing of OsteoDetect software for detecting wrist fractures
May 26, 2018 - Children and adolescents growing up in extreme societal conditions more likely to resort to violence
May 26, 2018 - New study puts forth most comprehensive tree of life for malaria parasites
May 26, 2018 - New research shows why babies need to move in the womb
May 26, 2018 - UK steps forward to tackle global antimicrobial resistance
May 26, 2018 - CRISPR-Cas9-based strategy allows researchers to precisely alter hundreds of different genes
May 26, 2018 - UT Southwestern-led researchers find new way to determine prognosis of invasive kidney cancer
May 26, 2018 - Researchers develop film to prevent bacteria from growing on dental retainers and aligners
May 26, 2018 - Mobile health intervention for people with serious mental illness as effective as clinic-based treatment
May 26, 2018 - Vaginal estradiol tablets outperform moisturizers when treating vulvovaginal problems
May 26, 2018 - Researchers call for new genetic tests for congenital diseases
May 26, 2018 - KHN’s ‘What the Health?’ Campaign promises kept, plus ‘nerd reports’
May 26, 2018 - Lung-on-a-chip technology could streamline drug-testing for pulmonary fibrosis
May 26, 2018 - Study finds early antibiotic initiation for majority of premature infants
May 26, 2018 - New environmental monitoring project finds increased numbers of deer ticks in Southern Indiana
May 26, 2018 - Pediatricians Should Advocate for Life Support Training
May 26, 2018 - Cannabidiol significantly reduces seizures in patients with severe form of epilepsy
May 26, 2018 - Allergies can have serious, far-reaching consequences on adolescents
May 26, 2018 - Scientists develop lab-based system to study mechanisms of common liver disease
May 25, 2018 - New guidelines may help pathologists to more accurately classify and diagnose invasive melanoma
May 25, 2018 - Immune cells promote lung cancer metastases by forming clots in tumors, study finds
May 25, 2018 - Can Excess Weight in Toddlers Cause Brain Drain?
May 25, 2018 - Studying insight
May 25, 2018 - Researchers reveal potent new mechanism of action for treatment of IBD
May 25, 2018 - Study shows lack of follow-up care for patients with concussion
May 25, 2018 - Study establishes the importance of haploid cells
May 25, 2018 - Coveted BMJ award bestowed on The Clatterbridge Cancer Center
May 25, 2018 - AACN outlines evidence-based protocols and clinical strategies to manage alarms
May 25, 2018 - Origami inspires researchers to develop new solution for tissue regeneration
May 25, 2018 - Melorheostosis – Genetics Home Reference
May 25, 2018 - Non-addictive pain medication changing therapy for substance use disorders
May 25, 2018 - Delayed lactate measurements in sepsis patients increase risk of in-hospital death
May 25, 2018 - Researchers identify novel epigenetic mutations as cause of neurodevelopmental, congenital disorders
May 25, 2018 - UD researchers examine connection between DNA replication in HPV and cancer
May 25, 2018 - Researchers identify neurons that play key role in aggressive behavior
May 25, 2018 - Snail’s eye inspires new type of RIOCATH urinary catheter
May 25, 2018 - Russian researchers develop high-tech device-transformer for ultrasound examination
May 25, 2018 - Researchers discover unexpected chemosensor pathway for predator odor-evoked innate fear behaviors
May 25, 2018 - Researchers build 3-D printer that offers sweet solution to making detailed structures
May 25, 2018 - Nearly one in three people know someone addicted to opioids
May 25, 2018 - Research suggests link between faulty gene, alcohol, and heart failure
May 25, 2018 - New findings could help fine-tune treatment for cancer patients
May 25, 2018 - New cancer treatment approach targets specific sugar receptors
May 25, 2018 - Skin responsible for uptake of cancer-causing compounds during barbecuing than lungs
May 25, 2018 - Early-onset cannabis use linked to further drug abuse problems
May 25, 2018 - Covered California takes aim at hospital C-section rates
May 25, 2018 - FDA Approves Palynziq (pegvaliase-pqpz) for the Treatment of Adults with Phenylketonuria
May 25, 2018 - Arthritis Glossary
May 25, 2018 - Study links breast cancer to the body’s internal clock
May 25, 2018 - Strenuous exercise in teenage years may protect against height loss later in life
May 25, 2018 - FDA approves novel enzyme therapy for adults with rare and serious genetic disease
May 25, 2018 - New research project aims at developing effective interventions for kids with DLD
May 25, 2018 - Middlemen who save $$ on medicines — but maybe not for you
May 25, 2018 - Study sheds new light on sharp rise in fatal drug overdoses in recent years
May 25, 2018 - Students propose revision of listeriosis guidelines for safer pregnancy
May 25, 2018 - TNFi Exposure In Utero Does Not Up Serious Infection Risk
May 25, 2018 - Organization of cells in the inner ear enables the sense and sensitivity of hearing
May 25, 2018 - Yoga May Be Right Move Against Urinary Incontinence
May 25, 2018 - Drinking recommended amount of milk could protect obese children against metabolic syndrome
May 25, 2018 - New cytokine network can repair tissue damage in the intestine, study finds
May 25, 2018 - Lyme disease researcher dispels misconceptions about ticks and provides prevention tips
May 25, 2018 - Penn researchers find link between social media usage and underage drinking
May 25, 2018 - Unique nanotechnology method to simplify skin disease diagnosis
May 25, 2018 - Study reveals new protective mechanism for tumor cells in breast cancer
May 25, 2018 - FRAME Alternatives Laboratory chosen for major European liver research collaboration
May 25, 2018 - Study shows yogurt may dampen chronic inflammation linked to multiple diseases
May 25, 2018 - Invasive cancers that are born to be bad show detectable differences from harmless tumors
May 25, 2018 - Study identifies new mechanism involved in development of Lou Gehrig’s disease
May 25, 2018 - UAB professor receives award for malaria prevention study in pregnant women in Cameroon
May 25, 2018 - Study provides blueprint of how fruit flies can be used to screen potentially pathogenic human genes
May 25, 2018 - New drug-delivering nanoparticle could offer better way to treat brain tumors
May 25, 2018 - Kessler Foundation scientists compare two tests for assessing learning in individuals with MS
May 25, 2018 - Stroke Symptoms and Diagnosis (Beyond the Basics)
May 25, 2018 - Protein goes against the family to prevent cancer
May 25, 2018 - Drugmakers blamed for blocking generics have milked prices and cost U.S. billions
May 25, 2018 - Speakers announced for National Medicines Symposium 2018
May 25, 2018 - GSK Receives FDA Approval of Arnuity Ellipta for Asthma in Children From 5 Years of Age
May 25, 2018 - Pfizer settles kickback case related to copay assistance for $24m
May 25, 2018 - Nuclear pore functions are essential for T cell survival
May 25, 2018 - Study defines molecular basis to explain connection between mother’s nutrition and infant growth
New biodegradable pressure sensor could help monitor serious health conditions

New biodegradable pressure sensor could help monitor serious health conditions

image_pdfDownload PDFimage_print

UConn engineers have created a biodegradable pressure sensor that could help doctors monitor chronic lung disease, swelling of the brain, and other medical conditions before dissolving harmlessly in a patient’s body.

The UConn research is featured in the current online issue of the Proceedings of the National Academy of Sciences.

The small, flexible sensor is made of medically safe materials already approved by the U.S. Food and Drug Administration for use in surgical sutures, bone grafts, and medical implants. It is designed to replace existing implantable pressure sensors that have potentially toxic components.

Those sensors must be removed after use, subjecting patients to an additional invasive procedure, extending their recovery time, and increasing the risk of infection.

Because the UConn sensor emits a small electrical charge when pressure is applied against it, the device also could be used to provide electrical stimulation for tissue regeneration, researchers say. Other potential applications include monitoring patients with glaucoma, heart disease, and bladder cancer.

“We are very excited because this is the first time these biocompatible materials have been used in this way,” says Thanh Duc Nguyen, the paper’s senior author and an assistant professor of mechanical and biomedical engineering in the Institute of Regenerative Engineering at UConn Health and the Institute of Materials Science at the Storrs campus.

“Medical sensors are often implanted directly into soft tissues and organs,” Nguyen notes. “Taking them out can cause additional damage. We knew that if we could develop a sensor that didn’t require surgery to take it out, that would be really significant.”

A prototype sensor made by the lab consisted of a thin polymer film five millimeters long, five millimeters wide, and 200 micrometers thick. The sensor was implanted in the abdomen of a mouse in order to monitor the mouse’s respiratory rate. It emitted reliable readings of contractions in the mouse’s diaphragm for four days before breaking down into its individual organic components.

To make sure the sensor was also medically safe, the researchers implanted it in the back of a mouse and then watched for a response from the mouse’s immune system. The results showed only minor inflammation after the sensor was inserted, and the surrounding tissue returned to normal after four weeks.

One of the project’s biggest challenges was getting the biodegradable material to produce an electrical charge when it was subjected to pressure or squeezed, a process known as the piezoelectric effect. In its usual state, the medically safe polymer used for the sensor – a product known as Poly(L-lactide) or PLLA – is neutral and doesn’t emit an electrical charge under pressure.

Eli Curry, a graduate student in Nguyen’s lab and the paper’s lead author, provided the project’s key breakthrough when he successfully transformed the PLLA into a piezoelectric material by carefully heating it, stretching it, and cutting it at just the right angle so that its internal molecular structure was altered and it adopted piezoelectric properties. Curry then connected the sensor to electronic circuits so the material’s force-sensing capabilities could be tested.

When put together, the UConn sensor is made of two layers of piezoelectric PLLA film sandwiched between tiny molybdenum electrodes and then encapsulated with layers of polylactic acid or PLA, a biodegradable product commonly used for bone screws and tissue scaffolds. Molybdenum is used for cardiovascular stents and hip implants.

The piezoelectric PLLA film emits a small electrical charge when even the most minute pressure is applied against it. Those small electrical signals can be captured and transmitted to another device for review by a doctor.

As part of their proof of concept test for the new sensor, the research team hardwired an implanted sensor to a signal amplifier placed outside of a mouse’s body. The amplifier then transmitted the enhanced electrical signals to an oscilloscope where the sensor’s readings could be easily viewed.

The sensor’s readings during testing were equal to those of existing commercial devices and just as reliable, the researchers say. The new sensor is capable of capturing a wide range of physiological pressures, such as those found in the brain, behind the eye, and in the abdomen. The sensor’s sensitivity can be adjusted by changing the number of layers of PLLA used and other factors.

Nguyen’s group is investigating ways to extend the sensor’s functional lifetime. The lab’s ultimate goal is to develop a sensor system that is completely biodegradable within the human body.

But until then, the new sensor can be used in its current form to help patients avoid invasive removal surgery, the researchers say.

“There are many applications for this sensor,” says Nguyen. “Let’s say the sensor is implanted in the brain. We can use biodegradable wires and put the accompanying non-degradable electronics far away from the delicate brain tissue, such as under the skin behind the ear, similar to a cochlear implant. Then it would just require a minor treatment to remove the electronics without worrying about the sensor being in direct contact with soft brain tissue.”

Nguyen’s research group has filed for a patent for the new sensor. The patent application is pending.

Source:

Biodegradable Sensor Monitors Pressure in the Body then Disappears

Tagged with:

About author

Related Articles