Breaking News
February 20, 2019 - Sleeping in contact lenses puts you at risk of dangerous infection
February 20, 2019 - “We should study that!”: How a nurse-scientist found her passion
February 20, 2019 - Cervical microbiome may influence HPV infection more than previously thought
February 20, 2019 - Sausage mislabeling in Canada is down, new study finds
February 20, 2019 - Study shows blood pressure benefits of morning exercise for older overweight/obese adults
February 20, 2019 - New screening method could catch organ rejection much earlier without a biopsy needle
February 20, 2019 - Study may have important implications for refining parenting during child’s adolescence
February 20, 2019 - Study sheds new light on how antibiotic resistance genes are transferred between bacteria
February 20, 2019 - Chronic Wasting Disease may soon spread to humans, warns CDC
February 20, 2019 - Scientists identify new genetic causes linked to abnormal pregnancies and miscarriages
February 20, 2019 - Using LyoSpeed technology to avoid residual solvent when drying HPLC fractions
February 20, 2019 - New screening tool more likely to identify sexual and labor exploitation of youth
February 20, 2019 - Newly licensed nurses work for long hours, also have a second paid job
February 20, 2019 - Physicists identify simple mechanism used by deadly bacteria to fend off antibiotics
February 20, 2019 - FDA Grants Priority Review to Genentech’s Personalized Medicine Entrectinib
February 20, 2019 - Exposure to chemicals before and after birth is associated with a decrease in lung function
February 20, 2019 - Neuroscientists reveal that simple brain region can guide complex feats of mental activity
February 20, 2019 - Study finds new link between food allergies and multiple sclerosis
February 20, 2019 - First gene therapy operation for macular degeneration is a success
February 20, 2019 - Physicians graduated outside the U.S. offer better care for Medicare patients with complex needs
February 20, 2019 - Study shows therapeutic potential of VEGF-A mRNA for regenerative angiogenesis in humans
February 20, 2019 - FDA Approves Keytruda (pembrolizumab) for the Adjuvant Treatment of Patients with Melanoma with Involvement of Lymph Node(s) Following Complete Resection
February 20, 2019 - Study identifies brain cells that modulate behavioral response to threats
February 20, 2019 - Researchers take closer look at how viruses bind cells and cause infection
February 20, 2019 - Newly developed gene therapy helps decelerate aging process
February 20, 2019 - Study suggests new treatment strategy for deadly brain cancer
February 20, 2019 - Scientists develop unique hybrid implant that imitates bone structure
February 20, 2019 - Push-ups can be tailored to meet specific needs of individuals
February 20, 2019 - Early-career job loss has long term health implications
February 20, 2019 - CVD Does Not Modify Depression-Mortality Link in Elderly
February 20, 2019 - Electrical activity early in fruit flies’ brain development could shed light on how neurons wire the brain
February 20, 2019 - Machine learning technique helps predict which asthma patients respond to corticosteroid therapy
February 20, 2019 - Self-reported sleep duration is a useful tool to measure sleep in children, study suggests
February 20, 2019 - T-cells play key role in how the body fights follicular lymphoma
February 20, 2019 - Study shows how 3D organization of genetic material helps perpetuate the species
February 20, 2019 - Researchers engineer stem cell with ‘suicide genes’ to induce cell death in all but beta cells
February 20, 2019 - Study reveals major sex differences in management of cardiovascular risk factors among U.S. adults
February 20, 2019 - Health Tip: Get Your Child to School on Time
February 20, 2019 - Shortcut strategy for screening compounds with clinical potentials for drug development
February 20, 2019 - Common acid reflux drugs tied to elevated risk for kidney disease
February 20, 2019 - Microbiome could be culprit when good drugs do harm
February 20, 2019 - Prenatal exposure to forest fires causes stunted growth in children
February 20, 2019 - Gene therapy restores hearing in mice with congenital genetic deafness
February 20, 2019 - First molecular test predicts treatment response for kidney cancer
February 20, 2019 - New method for improved visualization of single-cell RNA- sequencing data
February 20, 2019 - Researchers capture altered brain activity patterns of Parkinson’s in mice
February 20, 2019 - A possible blood test for detecting Alzheimer’s disease before symptoms show
February 20, 2019 - Primary care physicians associated with longevity, new research finds
February 19, 2019 - New study identifies many key lessons to establish sanctioned safe consumption sites
February 19, 2019 - Single CRISPR treatment can safely and stably correct genetic disease
February 19, 2019 - Multinational initiative to study familial primary distal renal tubular acidosis
February 19, 2019 - Breakthrough study highlights the promise of cell therapies for muscular dystrophy
February 19, 2019 - Subsymptom Threshold Exercise Speeds Concussion Recovery
February 19, 2019 - Midline venous catheters – infants: MedlinePlus Medical Encyclopedia
February 19, 2019 - Searching for side effects
February 19, 2019 - Humanity is all right, probably, although human extinction remains quite possible, researcher says
February 19, 2019 - Having Anesthesia Once as a Baby Does Not Cause Learning Disabilities, New Research Shows
February 19, 2019 - Anti-cancer immunotherapy could be used to fight HIV
February 19, 2019 - Customized Micropatterning for Improved Physiological Relevance
February 19, 2019 - Unique gene therapy approach paves new way to tackle rare, inherited diseases
February 19, 2019 - Activating gene that helps excite neurons reverses depression in male mice
February 19, 2019 - Science Puzzling Out Differences in Gut Bacteria Around the World
February 19, 2019 - Cells that destroy the intestine
February 19, 2019 - On recovery, vulnerability and ritual: An exhibit in white
February 19, 2019 - Scientific Duo Gets Back To Basics To Make Childbirth Safer
February 19, 2019 - COPD patients need more support when understanding new chest symptoms
February 19, 2019 - Using light-based method for production of pharmaceutical molecules
February 19, 2019 - Scientists find link between inflammation and cancer
February 19, 2019 - The High Cost Of Sex: Insurers Often Don’t Pay For Drugs To Treat Problems
February 19, 2019 - Hearing impairment associated with accelerated cognitive decline with age
February 19, 2019 - Researchers identify multiple genetic variants associated with body fat distribution
February 19, 2019 - Influenza and common cold are completely different diseases, study shows
February 19, 2019 - Scientists untangle how microbes manufacture key antibiotic compound
February 19, 2019 - Greater primary care physician supply associated with longer life spans
February 19, 2019 - HIV-1 protein suppresses immune response more broadly than thought
February 19, 2019 - Brain imaging indicates potential success of drug therapy in depressive patients
February 19, 2019 - For 2020 Dem Hopefuls, ‘Medicare-For-All’ Is A Defining Issue, However They Define It
February 19, 2019 - Specialized lung cells appear in the developing fetus much earlier than previously thought
February 19, 2019 - KU professor discusses promise of brain-computer interface to aid, restore communication
February 19, 2019 - Highly effective solution for detecting onset of aggregation in nanoparticles
Three-dimensional organization of genome plays key role in gene expression, cell fate

Three-dimensional organization of genome plays key role in gene expression, cell fate

image_pdfDownload PDFimage_print

Scientists have long been reading the code of life – the genome -, as a sequence of letters but now researchers have also started exploring its three-dimensional organization. In a paper published in Nature Genetics, an interdisciplinary research team of scientists from the Centre for Genomic Regulation (CRG) – including a Centro Nacional de Análisis Genómico (CNAG-CRG) group – in Barcelona, Spain, shows that the three-dimensional organization of the genome plays a key role in gene expression and consequently in determining cell fate.

It all began with the 4D Genome project, an ambitious and innovative research initiative funded by a European Research Council Synergy grant aimed at understanding how the spatial organization of the genome contributes to decisions made by cells. What scientists wanted to find out was whether genome architecture plays an active function or whether it is a mere side effect of the genome’s activity. The model that the 4D Genome team used was cell reprogramming, a process that allows the scientists to revert white blood cells back to a state of pluripotency whereby these cells can differentiate into any other cell type. Proteins that control gene activity (known as transcription factors) play a key role in this process, which the 4D Genome team studied in great detail, assessing how they induce changes in gene expression, modifications of chromatin (the structure around which DNA is wrapped), and changes in the 3D organization of the genome.

Understanding how stem cells are formed and how they can convert into different cell types is a major challenge in modern biology. It has been known since the fifties that all specialized cells in the body contain the same genome. So, what then distinguishes one cell type from another? The answer is that different cells read the information contained in different parts of the genome. The machinery required to achieve this selective information recall resides primarily in so called ‘transcription factors’, molecules that switch genes on or off. Many other molecules are also involved in this process, including epigenetic regulators that help to densely pack the genome into the nucleus of a cell, or locally unpack it to allow gene expression. The scientists used a reprogramming method discovered by CRG senior researcher Thomas Graf and his team. With this precision tool in hand, they were able to study the dynamics of genome organization by comparing the changes in genome architecture and transcription at different times during reprogramming.

“We expected that transcription factors would first switch on certain genes, which then afterwards may force a re-organization of the 3D structure of the chromosome. Surprisingly, what we found is that in a large proportion of the genome, the transcription factors were actually promoting this re-organization before the genes were switched on,” explains Ralph Stadhouders, co-first author of the paper together with computational biologist Enrique Vidal.

“Our paper shows that transcription factors may play a completely new role in cell reprogramming: they do not only switch genes on and off, but also promote the architectural changes necessary to modify gene expression,” states Thomas Graf, senior CRG group leader and lead investigator of this study. “It may have relevant implications for researchers worldwide studying gene regulation in general since we know now that the large-scale organization of the genome cannot be ignored. It also raises new questions about how these large changes can be brought about: possibly new mechanisms, perhaps even new machineries that are necessary to change certain areas of the genome” reflects Graf.

The perfect combination: risky + interdisciplinary fundamental science

The findings reported in Nature Genetics indicate that genome architecture has important informational value for controlling gene expression during cell reprogramming, and is thus required for the specialized functions of a cell. “We are only scratching the surface of what could be critical as yet unrecognized mechanisms by which cells regulate gene expression” says co-principal investigator and ICREA research professor at CNAG-CRG, Marc A. Martí-Renom. “The new discovery might also be fundamental for development and for some development-related diseases and cancer,” he concludes.

Again, this is an example on how risky science with innovative and interdisciplinary approaches leads to surprising and relevant results to advance knowledge. In this case, four laboratories at the Centre for Genomic Regulation (including a CNAG-CRG one) took full advantage of their experience and diverse capabilities to address fundamental questions in genome biology with the support of a 13M € ERC Synergy grant. “Promoting and supporting fundamental research is crucial to advance knowledge. We are proud that our project is already providing the first answers to the burning question about how genome 3D organization shapes genome regulation,” agree the four group leaders participating in the 4D Genome project: Thomas Graf, Marc A. Martí-Renom, Guillaume Filion, and Miguel Beato.

Tagged with:

About author

Related Articles