Breaking News
April 21, 2019 - More TV, Tablets, More Attention Issues at Age 5
April 21, 2019 - Drug reduces risk of kidney failure in people with diabetes, study finds
April 21, 2019 - New research identifies novel link between antibiotic resistance and climate change
April 21, 2019 - Simple intervention can provide lasting protection for teens against junk food marketing
April 21, 2019 - The protein p38-gamma identified as a new therapeutic target in liver cancer
April 21, 2019 - Novel system enables researchers to study bacteria within mini-tissues in a dish
April 21, 2019 - Discovery of oral cancer biomarkers could save thousands of lives
April 21, 2019 - Geneva Exhibition committee gives gold medals to two medications developed by Kazan
April 21, 2019 - Scientists aim to minimize or eliminate hair loss during cancer treatment
April 21, 2019 - WiFi interacts with signaling pathways in the human brain
April 21, 2019 - Stroke Hospitalizations Down in Black, White Medicare Enrollees
April 21, 2019 - First common risk genes discovered for autism
April 21, 2019 - Researchers map auditory sensory system of the mouse brain
April 21, 2019 - Scientists Bring Pig’s Brain, Dead 4 Hours, Back to ‘Cellular Activity’
April 21, 2019 - Virtual reality a promising tool for reducing fears and phobia in autism
April 21, 2019 - New analysis lists out opportunities for U.S. medical schools to advance population health
April 21, 2019 - More sleep may help teens with ADHD focus and organize
April 21, 2019 - Breakthrough antibody treatment suppresses HIV without antivirals
April 21, 2019 - AveXis Data Reinforce Effectiveness of Zolgensma in Treating Spinal Muscular Atrophy (SMA) Type 1
April 21, 2019 - Is your hand pain arthritis, carpal tunnel or something else?
April 21, 2019 - Measles outbreaks may become more frequent if vaccination rates continue to decline
April 21, 2019 - Researchers succeed in accelerating process of creating 3D images
April 21, 2019 - Tiny worm mimics key genetic risk for Alzheimer’s
April 21, 2019 - Angry dreams explained by brain waves
April 20, 2019 - Parenteral Antimicrobial Tx at Home Burdens Children’s Caregivers
April 20, 2019 - Diabetes treatment may keep dementia, Alzheimer’s at bay
April 20, 2019 - New bandage-like biosensor collects and analyzes sweat
April 20, 2019 - A comprehensive, centralized database of bovine milk compounds
April 20, 2019 - Two new epigenetic regulators maintain self-renewal of embryonic stem cells
April 20, 2019 - New Evidence That Veggies Beat Steak for Heart Health
April 20, 2019 - Study reveals genes associated with heavy drinking and alcoholism
April 20, 2019 - Texas A&M AgriLife becomes the newest member of NutriRECS international consortium
April 20, 2019 - In most states, insurance won’t cover addiction treatments
April 20, 2019 - Computer-based memory games may be beneficial for individuals with fragile X syndrome
April 20, 2019 - Timing of food intake influences molecular clock in the liver of mice
April 20, 2019 - Precise decoding of breast cancer cells paves way for new treatment option
April 20, 2019 - Scientists use 3D imaging to help model complex processes performed by placenta
April 20, 2019 - MediciNova Announces Plans to Move Forward with a Phase 3 Trial of MN-166 (ibudilast) in ALS
April 20, 2019 - Genetic variants that protect against obesity could aid new weight loss medicines
April 20, 2019 - New technology developed for microscopic imaging in living organisms
April 20, 2019 - when quitting cigarettes, consider using more nicotine, not less
April 20, 2019 - Key proteins can block Listeria without triggering the death of host cells
April 20, 2019 - Researchers create a working model of cerebral tract to study brain function
April 20, 2019 - New study shows that microbes can help break toxic chemical in dust
April 20, 2019 - Scientists use NIR light and injected DNA nanodevice to guide stem cells to injury
April 20, 2019 - Microbial Features ID’d for Pediatric Irritable Bowel Syndrome
April 20, 2019 - Study reveals patterns of drug intoxication deaths, organ donors across the US
April 20, 2019 - Scientists deploy CRISPR gene-editing tool to engineer multiple edits
April 20, 2019 - AHA News: Here’s How Middle-Aged People — Especially Women — Can Avoid a Heart Attack
April 20, 2019 - Charcot foot: MedlinePlus Medical Encyclopedia
April 20, 2019 - France to ban popular breast implants over cancer risk: media
April 20, 2019 - Researchers explore whether time of day can affect the body’s response to physical exertion
April 20, 2019 - CPAP brings longer life for obese people with sleep apnea: Study
April 20, 2019 - New discovery transforms conventional microfluidics into open-space microfluidics
April 20, 2019 - An accurate estimation of the overall cost of bacterial resistance in French hospitals during 2015 and 2016
April 20, 2019 - ‘PRO-cision Medicine’ approach helps personalize care for patients with cancer
April 19, 2019 - TG Therapeutics Receives Orphan Drug Designation for Umbralisib from the U.S. Food and Drug Administration for the Treatment of Marginal Zone Lymphoma
April 19, 2019 - Screen time—even before bed—has little impact on teen well-being: study
April 19, 2019 - Cytosurge’s first FluidFM User Conference
April 19, 2019 - New study finds that previously described differences among endoscopists are not true
April 19, 2019 - Study compares effectiveness and cost of gene therapy and HSCT in major beta-thalassemia
April 19, 2019 - Scientific breakthrough provides new hope for people living with multiple sclerosis
April 19, 2019 - New Virtual Reality Therapy game could offer relief for patients with chronic pain, mobility issues
April 19, 2019 - Emergency medicine doctors find better way to treat severe epileptic seizures in children
April 19, 2019 - MedlinePlus: Cholesterol Good and Bad
April 19, 2019 - For busy medical students, two-hour meditation study may be as beneficial as longer course
April 19, 2019 - Music therapy helps young patients feel better
April 19, 2019 - Molecular target UNC45A is essential for cancer cell proliferation and tumor growth
April 19, 2019 - Crackling and wheezing could be the sounds of a progressing lung disease
April 19, 2019 - Key research takeaways from ECCMID 2019
April 19, 2019 - AI Can Identify Model of Cardiac Rhythm Device From Chest X-Ray
April 19, 2019 - New way to combat childhood anxiety: treat the parents
April 19, 2019 - Women getting C-sections best judge of own pain medication needs | News Center
April 19, 2019 - Light-intensity physical activity associated with healthy brain aging
April 19, 2019 - Immune responses that prevent fungal infections may eliminate Trichinella spiralis
April 19, 2019 - Exercising in the morning, rather than at night, may yield better results, shows study
April 19, 2019 - Why eating ‘right’ could cause you to stray from your diet
April 19, 2019 - Health Tip: Antidepressant Precautions – Drugs.com MedNews
April 19, 2019 - Bigger portions lead to preschoolers eating more over time
April 19, 2019 - Specific strains of Staphylococcus aureus linked to wounds that do not heal
MIT engineers develop new technology that could improve drug evaluation

MIT engineers develop new technology that could improve drug evaluation

image_pdfDownload PDFimage_print

MIT engineers have developed new technology that could be used to evaluate new drugs and detect possible side effects before the drugs are tested in humans. Using a microfluidic platform that connects engineered tissues from up to 10 organs, the researchers can accurately replicate human organ interactions for weeks at a time, allowing them to measure the effects of drugs on different parts of the body.

Such a system could reveal, for example, whether a drug that is intended to treat one organ will have adverse effects on another.

“Some of these effects are really hard to predict from animal models because the situations that lead to them are idiosyncratic,” says Linda Griffith, the School of Engineering Professor of Teaching Innovation, a professor of biological engineering and mechanical engineering, and one of the senior authors of the study. “With our chip, you can distribute a drug and then look for the effects on other tissues and measure the exposure and how it is metabolized.”

These chips could also be used to evaluate antibody drugs and other immunotherapies, which are difficult to test thoroughly in animals because they are designed to interact with the human immune system.

David Trumper, an MIT professor of mechanical engineering, and Murat Cirit, a research scientist in the Department of Biological Engineering, are also senior authors of the paper, which appears in the journal Scientific Reports. The paper’s lead authors are former MIT postdocs Collin Edington and Wen Li Kelly Chen.

Modeling organs

When developing a new drug, researchers identify drug targets based on what they know about the biology of the disease, and then create compounds that affect those targets. Preclinical testing in animals can offer information about a drug’s safety and effectiveness before human testing begins, but those tests may not reveal potential side effects, Griffith says. Furthermore, drugs that work in animals often fail in human trials.

“Animals do not represent people in all the facets that you need to develop drugs and understand disease,” Griffith says. “That is becoming more and more apparent as we look across all kinds of drugs.”

Complications can also arise due to variability among individual patients, including their genetic background, environmental influences, lifestyles, and other drugs they may be taking. “A lot of the time you don’t see problems with a drug, particularly something that might be widely prescribed, until it goes on the market,” Griffith says.

As part of a project spearheaded by the Defense Advanced Research Projects Agency (DARPA), Griffith and her colleagues decided to pursue a technology that they call a “physiome on a chip,” which they believe could offer a way to model potential drug effects more accurately and rapidly. To achieve this, the researchers needed new equipment — a platform that would allow tissues to grow and interact with each other — as well as engineered tissue that would accurately mimic the functions of human organs.

Before this project was launched, no one had succeeded in connecting more than a few different tissue types on a platform. Furthermore, most researchers working on this kind of chip were working with closed microfluidic systems, which allow fluid to flow in and out but do not offer an easy way to manipulate what is happening inside the chip. These systems also require external pumps.

The MIT team decided to create an open system, which essentially removes the lid and makes it easier to manipulate the system and remove samples for analysis. Their system, adapted from technology they previously developed and commercialized through U.K.-based CN BioInnovations, also incorporates several on-board pumps that can control the flow of liquid between the “organs,” replicating the circulation of blood, immune cells, and proteins through the human body. The pumps also allow larger engineered tissues, for example tumors within an organ, to be evaluated.

Complex interactions

The researchers created several versions of their chip, linking up to 10 organ types: liver, lung, gut, endometrium, brain, heart, pancreas, kidney, skin, and skeletal muscle. Each “organ” consists of clusters of 1 million to 2 million cells. These tissues don’t replicate the entire organ, but they do perform many of its important functions. Significantly, most of the tissues come directly from patient samples rather than from cell lines that have been developed for lab use. These so-called “primary cells” are more difficult to work with but offer a more representative model of organ function, Griffith says.

Using this system, the researchers showed that they could deliver a drug to the gastrointestinal tissue, mimicking oral ingestion of a drug, and then observe as the drug was transported to other tissues and metabolized. They could measure where the drugs went, the effects of the drugs on different tissues, and how the drugs were broken down. In a related publication, the researchers modeled how drugs can cause unexpected stress on the liver by making the gastrointestinal tract “leaky,” allowing bacteria to enter the bloodstream and produce inflammation in the liver.

Griffith believes that the most immediate applications for this technology involve modeling two to four organs. Her lab is now developing a model system for Parkinson’s disease that includes brain, liver, and gastrointestinal tissue, which she plans to use to investigate the hypothesis that bacteria found in the gut can influence the development of Parkinson’s disease.

Other applications include modeling tumors that metastasize to other parts of the body, she says.

“An advantage of our platform is that we can scale it up or down and accommodate a lot of different configurations,” Griffith says. “I think the field is going to go through a transition where we start to get more information out of a three-organ or four-organ system, and it will start to become cost-competitive because the information you’re getting is so much more valuable.”

Source:

http://news.mit.edu/2018/body-chip-could-improve-drug-evaluation-0314

Tagged with:

About author

Related Articles