Breaking News
December 19, 2018 - Research opens door to development of drug or vaccine for late-onset Alzheimer’s
December 19, 2018 - Single workout can boost metabolism for days
December 19, 2018 - UI study leads to better understanding of signaling capacity between neurons
December 19, 2018 - Gut microbiome plays role in immune system regulation, study finds
December 19, 2018 - How MAPK translocation leads to drug resistance in melanoma
December 19, 2018 - Increasing prevalence of antibiotic resistance in the U.S. linked with occasional use
December 19, 2018 - Mind-body exercises may improve cognition in older adults
December 19, 2018 - Hepatitis C drug can eliminate chikungunya, yellow fever virus
December 19, 2018 - Separating male and female mice changes the way they smell, shows study
December 19, 2018 - FDA Approves Genentech’s Tecentriq in Combination With Avastin and Chemotherapy for the Initial Treatment of Metastatic Non-Squamous Non-Small Cell Lung Cancer
December 19, 2018 - Mediterranean Diet for Osteoarthritis | About OA
December 19, 2018 - Successful bladder repair using silk fibroid scaffolds
December 19, 2018 - Quidel receives CE mark to use Sofia 2 Lyme+ Fluorescent Immunoassay with Sofia 2 analyzer
December 19, 2018 - Horizon Discovery partners with C4XD to validate novel synthetic lethal oncology targets
December 19, 2018 - Research suggests a promising therapeutic target to treat or prevent metabolic disorders
December 19, 2018 - Split liver transplants could save children on wait list finds study
December 19, 2018 - Michigan-based food manufacturer ordered to discontinue operations after recurrent food safety violations
December 19, 2018 - Real-time neurofeedback controls Parkinson’s brainwaves
December 19, 2018 - Incorrect prescribing warnings in electronic prescribing systems
December 19, 2018 - New $1.6 million NIH grant supports study on a gene vital to circadian rhythms
December 19, 2018 - Racial Disparities Seen Among Teens Undergoing Flu Vaccination
December 19, 2018 - To resolve inflammation, location matters
December 19, 2018 - Dancing could help older women to perform their daily tasks
December 19, 2018 - Research identifies new therapeutic target for cancer treatment and tissue regeneration
December 19, 2018 - Energy costs, social isolation contribute to health risk of older adults in extreme weather
December 19, 2018 - Potential combination therapy against rare disease of the bone marrow could improve treatment
December 19, 2018 - Researchers aim to improve cognition, reverse weight gain in schizophrenia
December 19, 2018 - UC San Diego Health offers new DRG stimulation device for phantom limb pain
December 19, 2018 - Study examines relationship between growth restriction and risk of childhood mortality
December 19, 2018 - New study provides insights on increased risk of suicide in young patients visiting ED
December 19, 2018 - AHA: Thyroid Problems Linked to Worsening Heart Failure
December 19, 2018 - World-first coeliac disease vaccine enters Phase 2 trials
December 19, 2018 - RNA sequencing offers novel insights into the microbiome
December 19, 2018 - A promising, effective vaccine for common respiratory disease
December 19, 2018 - Protein may slow progression of emphysema, study finds
December 19, 2018 - Studying atrial fibrillation — and exploring new frontiers in precision health
December 19, 2018 - A New Way To Get College Students Through A Psychiatric Crisis — And Back To School
December 19, 2018 - Optum, UnitedHealthcare take action to help people affected by North Carolina winter storms
December 18, 2018 - Weight change in middle-aged, elderly Chinese Singaporeans related to increased risk of death
December 18, 2018 - Immune cells sacrifice themselves to protect us from invading bacteria
December 18, 2018 - Watching brain cells fire, with a twist of gravitational waves
December 18, 2018 - 2018 in Review
December 18, 2018 - Getting the Most Out of the CLARITY Technique
December 18, 2018 - NVF shoes provide a viable option for track and road racing
December 18, 2018 - CRISPR may restore effectiveness of chemotherapies used to treat lung cancer
December 18, 2018 - New app accurately measures and charts progression of skin wounds
December 18, 2018 - Persistent Discrimination ID’d Among Physician Mothers
December 18, 2018 - Cellphone technology developed to detect HIV
December 18, 2018 - A Stanford doctor hits the field with the 49ers — as their airway management physician
December 18, 2018 - The Rise of Anxiety Baking
December 18, 2018 - Just one night of sleep deprivation increases the urge to eat
December 18, 2018 - Study reveals mechanism behind failed remyelination in MS
December 18, 2018 - New genetic testing method increases the precision of biomarker analysis
December 18, 2018 - Simple technique to effectively treat underdiagnosed cause of debilitating chest pain
December 18, 2018 - Barbershop-based medical intervention can successfully lower blood pressure, new data shows
December 18, 2018 - Food labels have caused changes in consumers’ intake and industry’s use of key additives
December 18, 2018 - Sickest children could benefit from split liver transplants
December 18, 2018 - Scientists create patient-specific model to identify most effective treatment for appendix cancer
December 18, 2018 - ‘Little Foot’ endocast reveals a small brain combining ape-like and human-like features
December 18, 2018 - New therapy for childhood blindness shows ‘very promising’ results
December 18, 2018 - Researchers discover promising new compound against Buruli ulcer
December 18, 2018 - Study finds significant use of traditional, complementary and alternative medicines in Sub-Saharan Africa
December 18, 2018 - California Farm Implicated in Outbreak of E. coli Tied to Romaine Lettuce
December 18, 2018 - Mobile health has power to transform HIV/AIDS nursing
December 18, 2018 - Celiac Vaccine in Clinical Trials at Columbia
December 18, 2018 - Research into mental health first aid prompts practical guidance and resources for workplace
December 18, 2018 - Researcher conducts study to investigate peripheral blood markers of Alzheimer’s disease
December 18, 2018 - Researchers identify link between mucus in the small airways and pulmonary fibrosis
December 18, 2018 - EU Commission’s Health Policy Platform to host EKHA program on transplantation
December 18, 2018 - Survivors of childhood Hodgkin lymphoma have high risk of developing solid tumors
December 18, 2018 - Small changes to cafeteria design can get kids to eat healthier, new assessment tool finds
December 18, 2018 - From Machines to Cyclic Compounds
December 18, 2018 - New study reveals best assessment tools to establish delirium severity
December 18, 2018 - Rice University scientists develop synthetic protein switches to control electron flow
December 18, 2018 - Home-based pulmonary function monitoring for teens with Duchenne muscular dystrophy
December 18, 2018 - Researchers identify potential target for new breast cancer treatments
December 18, 2018 - National Biofilms Innovation Centre award grant to Neem Biotech for novel anti-biofilm drug development
December 18, 2018 - Artificial intelligence and the future of medicine
December 18, 2018 - Montana State doctoral student receives grant for her work to improve neuroscience tool
December 18, 2018 - Early postpartum initiation of opioids associated with persistent use
The Human Microbiome – A New Potential Fingerprint in Forensic Evidence?

The Human Microbiome – A New Potential Fingerprint in Forensic Evidence?

image_pdfDownload PDFimage_print

An interview with Professor Jack Gilbert, conducted by Alina Shrourou, BSc.

What is a microbiome and why are microbiomes unique to an individual?

A microbiome is the sum total of the microbes of bacteria, fungi, and viruses that live inside your body. They are all over your skin and in your gut. Bacteria alone accounts for 2-3 lbs of your body mass.

© vrx/Shutterstock.com

What’s interesting is that when you’re born, you’re mostly sterile. You acquire microbes from your mother and the environment. Then, the way you live your life and the things you interact with shape the kind of microbes that colonize and live inside you. This results in your own unique profile, and even identical twins have different profiles.

Please outline the Burglary Microbiome Project that you discussed at Pittcon 2018.

We’ve been trying to understand if our bacterial signature can act like a fingerprint, and be used as some kind of forensic tool, like trace evidence.

We emit around 36 million bacterial cells into our immediate environment every single hour – so if a burglar in a room for 10 minutes touches objects and leaves behind some their bacteria, can we detect their personal bacterial signature by obtaining some of the bacteria present in the room?

It could then be possible to sequence the information, as we do with human DNA at a crime scene, and therefore identify that individual.

It’s an interesting idea, and at the moment it’s a very early research project that we’re working on with the National Institute of Justice.

How do you determine whether a microbial organism is associated with a particular trait?

We’ve been trying to see if the bacterial signature that lives inside us is somehow correlated with our lifestyle choices.

The signature that belongs to you is very much determined by how you’ve lived your life; whether you had pets growing up, whether you grew up in a city or a farm etc, are all factored in.

Different working environments can determine what bacteria live inside you, how they grow and how they’re distributed, so we wanted to see if that correlates. We built up a database of over 12,000 people and we’ve been correlating how similar our mock burglars microbiome signatures are to people in our database. It’s complicated, but we’re getting really close to identifying somebody’s lifestyle traits based on the microbial signature they leave behind at a crime scene.

What analytical techniques are you using to identify microbial biomarkers?

We leverage genome sequencing, especially the Illumina platforms – DNA extraction, and PCR amplification, much the same way as we would with human DNA sequences. We identify a particular gene present in all bacteria which we then sequence and use to determine which bacterial organisms are present in different subjects and what makes an individual unique.

We then produce a probability estimate that your bacteria would be found in a certain environment. Using advanced statistical techniques, we try and identify whether your bacteria’s sequencing data can place you at that crime scene.

Please outline any specific biomarkers that you have already identified in this project.

The way in which we analyze the microbiota is by looking for unique strains of organisms. We all have one particular species of E. coli living inside our gut, and we all have Staphylococcus epidermidis living in our skin, but each individual has a strain with a genotype and genome unique to them. It evolves with you and mutates over time, and we call those mutations biomarkers.

We’re using that information to try and identify whether we can pull out particular genotypic mutations, or biomarkers, which are unique to an individual.

If an individual’s lifestyle can change throughout their lifetime, does this mean that their microbiome can too? If so, are microbiome signatures always an accurate identification tool?

We are trying to answer a very particular question; whether the microbiome profile of an individual is stable and stays with you throughout your life.

We hypothesize based on all the data we’ve collected that we have a unique strain based composition which is a fingerprint of our microbiota, but we haven’t proved this, and there are lots of factors that could alter this theory.

Part of this project is to try and identify whether our microbial fingerprint stable, and how stable it is. Once you leave a trace of your bacteria signature on a doorknob or television set, does it decay? And if so, how rapidly?

What do you think the future holds for using an individual’s unique microbiome in this way? Or for other applications?

The future is really exciting. We can potentially use the microbiome in forensic science, but that would be in the distant future. The human DNA program for forensic evidence took decades, and we’re only just starting our journey.

What’s most exciting is we can also use the microbiome information inside our bodies in personalized medicine, using the microbiome to predict whether an individual will respond to a particular therapy.

We could screen a cancer patient’s microbiome and determine if they have the biomarkers that can indicate their response to immunotherapy, which can help health care professionals identify their ideal strategy for therapy. We can use this to tailor treatment to the individual rather than the average treatment of a population.

How can Pittcon 2018 help you with your research?

What’s exciting about Pittcon is that it brings together a whole group of technological experts in areas that I wouldn’t normally have access to.

Being able to access the breadth of experience and technologies that are available to me here gives me more opportunities to expand my research objectives and to do something novel and exciting, that perhaps I wouldn’t normally have the chance to be involved in.

About Prof. Jack Gilbert

Professor Jack A Gilbert earned his Ph.D. from Unilever and Nottingham University, UK in 2002, and received his postdoctoral training at Queens University, Canada. He subsequently returned to the UK in 2005 to Plymouth Marine Laboratory at a senior scientist until his move to Argonne National Laboratory and the University of Chicago in 2010.

Currently, Professor Gilbert is the Director of the Microbiome Center and a Professor of Surgery at the University of Chicago. He is also Group Leader for Microbial Ecology at Argonne National Laboratory, Research Associate at the Field Museum of Natural History, Scientific Fellow at the Marine Biological Laboratory, and the Yeoh Ghim Seng Visiting Professorship in Surgery at the National University of Singapore.

Gilbert uses molecular analysis to test fundamental hypotheses in microbial ecology. He has authored more than 250 peer reviewed publications and book chapters on metagenomics and approaches to ecosystem ecology. He is the founding Editor in Chief of mSystems journal. In 2014 he was recognized on Crain’s Business Chicago’s 40 Under 40 List, and in 2015 he was listed as one of the 50 most influential scientists by Business Insider, and in the Brilliant Ten by Popular Scientist.

In 2016 he won the Altemeier Prize from the Surgical Infection Society, and the WH Pierce Prize from the Society for Applied Microbiology for research excellence. He also co-authored “Dirt is Good” published in 2017, a popular science guide to the microbiome and children’s health.

Tagged with:

About author

Related Articles