Breaking News
August 18, 2018 - Microscopic insect odour detecting mechanisms discovered
August 18, 2018 - Researchers develop new approach to study how tuberculosis infects people
August 18, 2018 - FDA Approves Kalydeco (ivacaftor) for Cystic Fibrosis in Children Ages 12 to
August 18, 2018 - An ion channel differentiates newborn and mature neurons in the adult brain
August 18, 2018 - Socio-economic position associated with pregnant women’s exposure to environmental hazards
August 18, 2018 - Voters to settle dispute over ambulance employee break times
August 18, 2018 - AGA urges policymakers and stakeholders to improve affordability of drugs
August 18, 2018 - Increasing dietary protein may lower risk of diabetes in people with NAFLD
August 18, 2018 - New HIV therapy suppresses viral replication and increases immune cells in drug-resistant patients
August 18, 2018 - Broad Genetic Testing for NSCLC May Not Improve Survival
August 18, 2018 - Discovery opens door for synthetic opioids with less addictive qualities
August 18, 2018 - Transgenic rice plant extracts could help stop the spread of HIV
August 18, 2018 - Hologic’s Cynosure division partners with Porter Instrument to distribute nitrous oxide and oxygen system
August 18, 2018 - Two thyroid medications recalled by FDA
August 18, 2018 - Forecast Sees Abnormal Heat Worldwide Through 2022
August 18, 2018 - Childhood absence epilepsy – Genetics Home Reference
August 18, 2018 - Fearing hard Brexit, UK drugmakers stockpile to protect lives
August 18, 2018 - Discovery may help broaden the scope of defenses against HPV
August 18, 2018 - When they start thinking green, they see green
August 18, 2018 - Scientists introduce microfluidics-based chip for manipulation and analysis of single cells
August 18, 2018 - Researchers design new way to grow nose cells for treating spinal cord injuries
August 18, 2018 - New light shed on relationship between calorie-burning fat and muscle function
August 18, 2018 - Surgery Saturday Instagram series takes you inside Stanford’s OR
August 18, 2018 - Researchers uncover surprising new role for inhibition in the cerebellum
August 18, 2018 - Children have better nutrition when they live near forests, global study shows
August 18, 2018 - OHSU professor conducts clinical trial with artificial pancreas using Xeris’ liquid glucagon
August 18, 2018 - HSS takes young patients with physical challenges on a surfing trip
August 18, 2018 - Study shows electronic health records leave doctors and patients unsatisfied
August 18, 2018 - Study uncovers mechanism that affects multiplication of dengue virus lineage
August 18, 2018 - Theravance Biopharma Reports Positive Top-Line Four-Week Data from Phase 2 Trial of TD-9855 for the Treatment of Symptomatic Neurogenic Orthostatic Hypotension
August 18, 2018 - Animations prove effective in accurately measuring pain
August 18, 2018 - Three faculty members appointed to endowed positions | News Center
August 18, 2018 - New technique detects, measures, analyzes unevenly charged biomolecules
August 18, 2018 - Brief exposures to stressors can be beneficial to cells, shows study
August 18, 2018 - UTHealth-led survey shows much work remains to increase safety of e-health records
August 18, 2018 - Researchers use super-resolution microscope to unravel secrets of deadly Nipah virus
August 18, 2018 - Scientists identify pathways that reveal insights into mechanism of lung cancer etiology
August 18, 2018 - FDA approves marketing of brainsway deep transcranial magnetic stimulation system for OCD
August 17, 2018 - OUHSC gets $20 million grant to advance research and patient care for Oklahomans
August 17, 2018 - Sperm morphology differs depending on qualities of male bird
August 17, 2018 - Texas A&M researchers develop clay-based platform to grow blood vessels
August 17, 2018 - FDA Approves Expanded Indication for Orkambi (lumacaftor/ivacaftor) in Children Ages 2-5 Years
August 17, 2018 - Caring for Concussions | NIH News in Health
August 17, 2018 - Team explores diabetes drug’s ability to treat RSV infection
August 17, 2018 - New imaging technique can spot tuberculosis infection in an hour | News Center
August 17, 2018 - PolyU researchers design new self-fitting scaffold to induce bone regeneration
August 17, 2018 - CartiHeal and LSU Health successfully enroll first two patients in Agili-C IDE pivotal study
August 17, 2018 - Less-invasive options are slowing disease progression in glaucoma patients
August 17, 2018 - Researchers discover new promising target point for cancer and diabetes therapies
August 17, 2018 - Podcast: KHN’s ‘What the Health?’ See you in court!
August 17, 2018 - New mobile phone application enables early detection of cerebral ictus
August 17, 2018 - UK’s leading sight loss charity invites applications from brightest minds in ophthalmic research
August 17, 2018 - Alternative devices can help when autoinjectors are unavailable
August 17, 2018 - Researchers produce artificial placenta model that closely resembles natural organ
August 17, 2018 - Study offers possibility of squelching a focal epilepsy seizure before symptoms appear
August 17, 2018 - FDA Alert: Temporary Total Artificial Heart Companion 2 Driver System by SynCardia Systems: Letter to Health Care Providers
August 17, 2018 - New statewide program in North Dakota aims to stem opioid misuse
August 17, 2018 - Researchers discover why sepsis from a staph infection causes organ failure
August 17, 2018 - Stony Brook University’s new medical students start a transformative journey
August 17, 2018 - Revealed: The molecular mechanism underlying hypertrophic cardiomyopathy | News Center
August 17, 2018 - New modeling studies highlight urgent need for effective drug policy reforms to prevent HIV
August 17, 2018 - Research explores relationship between personal history of infectious fever and cancer risk
August 17, 2018 - Study finds rise in cases of progressive massive fibrosis among U.S. coal miners
August 17, 2018 - NEDBELS project examines impact of neurodiversity concept on legal systems
August 17, 2018 - Seeking solutions to treat scleroderma
August 17, 2018 - Statins may improve conditions of people with rare lung disease
August 17, 2018 - Study finds why some people with brain markers of Alzheimer’s never develop dementia
August 17, 2018 - Life Biosciences contributes $100,000 to fund its biomedical innovation course on aging
August 17, 2018 - Researchers develop a set of health outcome measures for children with complex medical situations
August 17, 2018 - Many Americans Not Being Assessed for Depression
August 17, 2018 - Scientists report setbacks in quest for AIDS cure
August 17, 2018 - Christopher Gardner busts myths about milk | News Center
August 17, 2018 - Bacterial activity in child’s mouth may serve as biomarkers for autism spectrum disorder
August 17, 2018 - Scripps Research scientists uncover new approach for treating thrombocytopenia
August 17, 2018 - Mathematical model shows the influence of human behavior on spread of infectious diseases
August 17, 2018 - Valley Hospital achieves Magnet recognition for fourth consecutive time
August 17, 2018 - Researchers describe link between poor oocyte development and oxidative stress in obese mice
August 17, 2018 - Hospitals battle for control over fast-growing heart-valve procedure
August 17, 2018 - AHA: Home-Delivered Meals Keep Heart Failure Patients Out of Hospital
August 17, 2018 - In Southern Mozambique, only half of people diagnosed with HIV enroll in medical care
UConn researchers develop new composite for healing broken load-bearing bones

UConn researchers develop new composite for healing broken load-bearing bones

image_pdfDownload PDFimage_print

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

To facilitate repair, doctors may install a metal plate to support the bone as it fuses and heals. Yet that can be problematic. Some metals leach ions into surrounding tissue, causing inflammation and irritation. Metals are also very stiff. If a metal plate bears too much load in the leg, the new bone may grow back weaker and be vulnerable to fracture.

Seeking a solution to the problem, UConn professor Mei Wei, a materials scientist and biomedical engineer, turned to spiders and moths for inspiration. In particular, Wei focused on silk fibroin, a protein found in the silk fibers spun by spiders and moths known for its toughness and tensile strength.

The medical community has been aware of silk fibroin for a while. It is a common component in medical sutures and tissue engineering because of its strength and biodegradability. Yet no one had ever tried to make a dense polymer composite out of it, and that is what Wei knew she needed if she was going to create a better device for healing broken load-bearing bones.

Working with UConn associate professor Dianyun Zhang, a mechanical engineer, Wei’s lab began testing silk fibroin in various composite forms, looking for the right combination and proportion of different materials to achieve optimum strength and flexibility. The new composite certainly needed to be strong and stiff, yet not so much so that it would inhibit dense bone growth. At the same time, the composite needed to be flexible, allowing patients to retain their natural range of motion and mobility while the bone healed.

After dozens of tests, Wei and Zhang found the materials they were looking for. The new composite consists of long silk fibers and fibers of polylactic acid – a biodegradable thermoplastic derived from cornstarch and sugar cane – that are dipped in a solution in which each is coated with fine bioceramic particles made of hydroxyapatite (the calcium phosphate mineral found in teeth and bones). The coated fibers are then packed in layers on a small steel frame and pressed into a dense composite bar in a hot compression mold.

In a study recently published in the Journal of the Mechanical Behavior of Biomedical Materials, Wei reports that the high-performance biodegradable composite showed strength and flexibility characteristics that are among the highest ever recorded for similar bioresorbable materials in literature.

And they could get even better.

“Our results are really high in terms of strength and flexibility, but we feel that if we can get every component to do what we want them to do, we can get even higher,” says Wei, who also serves as the School of Engineering’s associate dean for research and graduate education.

The new composite is also resilient. Large leg bones in adults and seniors can take many months to heal. The composite developed in Wei’s lab does its job and then starts to degrade after a year. No surgery is required for removal.

Joining Wei and Zhang in the research were Bryant Heimbach, a Ph.D. candidate and materials scientist in Wei’s lab; and Beril Tonyali, a UConn undergraduate pursuing a degree in materials science and engineering.

The team has already begun testing new derivatives of the composite, including those that incorporate a single crystalline form of the hydroxyapatite for greater strength and a variation of the coating mixture to maximize its mechanical properties for bones bearing more weight.

Source:

Spider Silk Key to New Bone-Fixing Composite

Tagged with:

About author

Related Articles