Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Scientists use CRISPR tool to make multiple edits to DNA samples ‘in vitro’

Scientists use CRISPR tool to make multiple edits to DNA samples ‘in vitro’

Delaware’s Gene Editing Institute Discovery Could Rapidly Advance Personalized Cancer Care

Scientists at Christiana Care Health System’s Gene Editing Institute have developed a potentially breakthrough CRISPR gene-editing tool. It could allow researchers to take fragments of DNA extracted from human cells, put them into a test tube, and quickly and precisely engineer multiple changes to the genetic code, according to a new study published today in the CRISPR Journal.

Investigators at the Gene Editing Institute, which is part of the Helen F. Graham Cancer Center & Research Institute at Christiana Care, said their new “cell-free” CRISPR technology is the first CRISPR tool capable of making multiple edits to DNA samples “in vitro,” which means in a test tube or petri dish. The advance could have immediate value as a diagnostic tool, replicating the exact genetic mutations found in the tumors of individual cancer patients. Mutations that cause cancer to spread can differ from patient to patient, and being able to quickly identify the correct mutation affecting an individual patient can allow clinicians to implement a more targeted treatment strategy.

“With this new advance, we should be able to work with laboratory cultures and accomplish gene edits in less than a day, significantly reducing the time required for diagnostics compared to other CRISPR tools, and with much greater precision,” said Eric Kmiec, Ph.D., director of the Gene Editing Institute and principal author of the study. “This is particularly important for diagnostics linked to cancer care where time is critical.”

Kmiec also said that while other CRISPR tools are restricted to editing or repairing short segments of DNA code within a single gene, his team’s new CRISPR tool could lead to applications that are capable of removing and replacing entire genes. This could be important, he said, for using CRISPR to treat disease. Kmiec noted that while some ailments, like sickle cell anemia and Huntington’s disease, involve faulty DNA within a single gene, others, like Alzheimer’s and heart disease, appear to involve malfunctions in multiple genes where the best option “is not really gene editing, but gene replacement.”

CRISPR stands for “clustered regularly interspaced short palindromic repeats.” It is a defense mechanism found in bacteria that allows the bacteria to recognize and slice up the DNA of invading viruses. Scientists have learned how to manipulate this mechanism so that it essentially can be programmed to find and remove a specific sequence of DNA code-;which acts like software for controlling genes-;and replace it with a different sequence. This capability has generated unprecedented excitement about developing different CRISPR tools that could produce breakthrough treatments for a wide range of diseases by repairing a damaged gene, modifying it or deleting it entirely.

In the study published today, Kmiec and his colleagues-;lead author Brett Sansbury and co-author Amanda Wagner-;describe developing a “cell-free” CRISPR tool that can modify genes contained in something called a DNA plasmid. A plasmid is a type of DNA molecule that can be removed from a cell and maintained and manipulated in a petri dish or test tube.

The study notes that a key feature of the new CRISPR tool is that it uses a protein called Cpf1, more recently referred to as Cas12a, to essentially function like scissors for cutting out and inserting a targeted line of genetic code. Most of the CRISPR work underway today employs a different “set of scissors” in the form of an enzyme called Cas9. However, Sansbury said while the CRISPR-Cas9 gene editing system has proven to be effective at modifying genes that are inside a cell, it performed poorly when her team tried to use it in a “cell-free” environment to quickly engineer complex changes to DNA plasmids.

“It could be that there is something within the very complex machinery of a cell that allows the Cas9 enzyme to more easily accomplish deletions and insertions,” Sansbury said. “But it performed very poorly in our cell-free extracts.”

Sansbury noted that when Cas9 cuts DNA, the result can be “blunt ends,” while Cpf1 produces “sticky ends.” She said that the blunt-ended outcome could impede the ability to process the cut ends, which allows for the removal or “resection” of a section of genetic code and then seamlessly insert and attach new code.

Bringing the CRISPR Revolution to Everyday Cancer Care

The Gene Editing Institute is now working to use the new CRISPR-Cpf1 breakthrough to provide something akin to CRISPR on a computer chip to a commercial partner involved in cancer diagnostics that is intended to drive personalized cancer care.

“The speed at which you see our discovery moving from the bench to the bedside is unprecedented but not unanticipated,” said Nicholas Petrelli, M.D., FACS, Bank of America endowed medical director of the Helen F. Graham Cancer Center & Research Institute at Christiana Care. “The Gene Editing Institute exists within a community hospital system where we are committed to a patient-first approach to biomedical research. This major advance in CRISPR-assisted gene editing was accomplished with the support from the BIRD Foundation, which wants to see a commercial partner on board from the beginning to ensure that any discoveries will quickly benefit patients.”

Sansbury and Kmiec said that while their work with their CRISPR-Cpf1tool has confirmed its usefulness for reliably editing DNA samples that are part of a diagnostic test, it is not yet fully developed as a therapeutic tool for directly treating disorders that would involve repairing or removing malfunctioning genes in humans, animals or plants. However, by allowing gene editing to be quickly and precisely accomplished in a test tube or petri dish, they believe their tool is ideal for revealing more about how CRISPR actually modifies the genome, a process that remains largely shrouded in mystery.

“When you’re working with CRISPR inside a cell, you’re kind of working in a black box where you can’t really observe the gears of the machinery that are doing these amazing things,” Kmiec said. “You can see the results, the edits to the genes, but not necessarily how you got there, which is important for ensuring that CRISPR can be safely used to treat patients.”

“The Gene Editing Institute’s cell-free CRISPR-Cpf1 system is yet another landmark CRISPR-related discovery to emerge from Christiana Care Health System,” Janice E. Nevin, M.D., MPH, Christiana Care president and chief executive officer, said.

In 2016, scientists at the Gene Editing Institute described in the journal, Scientific Reports, how they combined CRISPR with short strands of synthetic DNA to greatly enhance the precision and reliability of the CRISPR gene editing technique. Called excision and corrective therapy, or EXACT, this new tool acts as both a template and a bandage for repairing a malfunctioning gene.

Source:

https://christianacare.org/

Tagged with:

About author

Related Articles