Breaking News
January 22, 2019 - Are your grandparents getting tipsy at the holiday party?
January 22, 2019 - New machine learning algorithms identify early symptoms of urinary tract infections
January 22, 2019 - A global influenza pandemic high on the WHO’s agenda
January 22, 2019 - Amgen Makes All Repatha (evolocumab) Device Options Available In The US At A 60 Percent Reduced List Price
January 22, 2019 - Elastronics—hydrogel-based microelectronics for localized low-voltage neuromodulation
January 22, 2019 - Branched-chain amino acids in tumors can be targeted to prevent and treat cancer
January 22, 2019 - Fueling macrophages with energy to attack and eat cancer cells
January 22, 2019 - Amgen And UCB Receive Positive Vote From FDA Advisory Committee In Favor Of Approval For Evenity (romosozumab)
January 22, 2019 - Does being bilingual make children more focused? Study says no
January 22, 2019 - Study reveals new genes and biological pathways linked to osteoarthritis
January 22, 2019 - FSU study provides better understanding of spinal cord injuries
January 22, 2019 - Delaying bath for newborn babies increases breastfeeding rates, finds study
January 21, 2019 - WHO identifies non-communicable diseases as major threat to human health
January 21, 2019 - Many parents still try non-evidence-based cold prevention methods for children
January 21, 2019 - High Levels of Activity, Motor Ability Linked to Better Cognition
January 21, 2019 - Killer blows? Knockout study of pair of mouse MicroRNA provides cancer insight
January 21, 2019 - Buffalo researchers receive grant to quicken development of generic equivalents of contraceptives
January 21, 2019 - One-third of pregnant women do not believe cannabis is harmful to their fetus
January 21, 2019 - Fiderstat could be used as chemopreventative drug for intestinal cancers caused by APC gene mutations
January 21, 2019 - Modifying healthcare delivery practices may improve discussions between youth and healthcare providers
January 21, 2019 - UNIST researcher named as recipient of Merck’s 2018 Life Science Awards
January 21, 2019 - How Getting a Flu Shot Could Save Your Life
January 21, 2019 - Surgical adhesions can be treated, prevented in mice
January 21, 2019 - Increased physician-targeted marketing associated with higher opioid overdose deaths
January 21, 2019 - Researchers uncover specific microbial signatures of intestinal disease
January 21, 2019 - Researchers discover new blood vessel system in bones
January 21, 2019 - Simple blood test reliably detects signs of Alzheimer’s damage before symptoms
January 21, 2019 - Study to investigate new targeted oral treatments for severe asthma
January 21, 2019 - Plan Your Plate | NIH News in Health
January 21, 2019 - Fecal occult blood test may improve CRC outcomes in some
January 21, 2019 - Blood test detects Alzheimer’s disease years before symptoms develop
January 21, 2019 - Mount Sinai joins with Paradigm and ReqMed to repurpose drug for treatment of MPS
January 21, 2019 - FDA Advisory Committee Votes on Zynquista (sotagliflozin) as Treatment for Adults with Type 1 Diabetes
January 21, 2019 - The causes and complications of snoring
January 21, 2019 - Placenta adapts and compensates when pregnant mothers have poor diets or low oxygen
January 21, 2019 - New implant could restore the transmission of electrical signals in injured central nervous system
January 21, 2019 - Rapid-acting fentanyl test strips found to be effective at reducing overdose risk
January 21, 2019 - Coronary Artery Calcium May Help Predict CVD in South Asians
January 21, 2019 - The mystery of the super-ager
January 21, 2019 - Scientists develop smart microrobots that can change shape depending on their surroundings
January 21, 2019 - Keep Moving to Keep Brain Sharp in Old Age
January 21, 2019 - Despite progress, gay fathers and their children still structurally stigmatized
January 21, 2019 - New drug for treating liver parasites in vivax malaria
January 21, 2019 - Merck recognized with 2018 Life Science Industry Award for best use of social media
January 21, 2019 - Coeur Wallis equips the canton of Valais with 260 SCHILLER defibrillators
January 21, 2019 - Scientists propose quick and pain-free method for diagnosing kidney cancer
January 21, 2019 - Signs of memory loss could point to hearing issues
January 21, 2019 - HeartFlow Analysis shows highest diagnostic performance for detecting coronary artery disease
January 21, 2019 - How Much Caffeine is Too Much?
January 21, 2019 - Take a timeout before you force your child to apologize
January 21, 2019 - Scientists design two AI algorithms to improve early detection of cognitive impairment
January 21, 2019 - Novel therapy for children with chronic hormone deficiency provides lifeline for parents
January 21, 2019 - Bioethicists call for oversight of poorly regulated, consumer-grade neurotechnology products
January 21, 2019 - Study shows hereditary hemochromatosis behind many cancers and joint diseases
January 21, 2019 - Short bouts of stairclimbing throughout the day can improve cardiovascular health
January 20, 2019 - Liver Transplant Survival May Improve With Race Matching
January 20, 2019 - Study implicates hyperactive immune system in aging brain disorders
January 20, 2019 - Cancer Diagnosis May Quadruple Suicide Risk
January 20, 2019 - Parkinson’s disease experts devise a roadmap
January 20, 2019 - Research brings new hope to treating degenerative brain diseases
January 20, 2019 - Scientists pinpoint a set of molecules that wire the body weight center of the brain
January 20, 2019 - Researchers get close to developing elusive blood test for Alzheimer’s disease
January 20, 2019 - UCLA researchers demonstrate new technique to develop cancer-fighting T cells
January 20, 2019 - Researchers discover how cancer cells avoid genetic meltdown
January 20, 2019 - Exercise makes even the ‘still overweight’ healthier: study
January 20, 2019 - University of Utah to establish first-of-its-kind dark sky studies minor in the US
January 20, 2019 - School-based nutritional programs reduce student obesity
January 20, 2019 - Improved maternity care practices in the southern U.S. reduce racial inequities in breastfeeding
January 20, 2019 - New enzyme biomarker test indicates diseases and bacterial contamination
January 20, 2019 - Republican and Democratic governors have different visions to transform health care, say researchers
January 20, 2019 - Researchers discover that spin flips happen in only half a picosecond in the course of a chemical reaction
January 20, 2019 - Suicide Risk Up More Than Fourfold for Cancer Patients
January 20, 2019 - Doctors find 122 nails in Ethiopian’s stomach
January 20, 2019 - UV disinfection technology eliminates up to 97.7% of pathogens in operating rooms
January 20, 2019 - Researchers discover mechanism which drives leukemia cell growth
January 20, 2019 - AHA: Infection as a Baby Led to Heart Valve Surgery for Teen
January 20, 2019 - Injection improves vision in a form of childhood blindness
January 20, 2019 - Multiple sclerosis therapies delay progression of disability
January 20, 2019 - New study finds infrequent helmet use among bike share riders
January 20, 2019 - Clearing up information about corneal dystrophies
New technology could make prosthetic use more intuitive and reliable

New technology could make prosthetic use more intuitive and reliable

image_pdfDownload PDFimage_print

Researchers have developed new technology for decoding neuromuscular signals to control powered, prosthetic wrists and hands. The work relies on computer models that closely mimic the behavior of the natural structures in the forearm, wrist and hand. The technology could also be used to develop new computer interface devices for applications such as gaming and computer-aided design (CAD).

The technology has worked well in early testing but has not yet entered clinical trials – making it years away from commercial availability. The work was led by researchers in the joint biomedical engineering program at North Carolina State University and the University of North Carolina at Chapel Hill.

Current state-of-the-art prosthetics rely on machine learning to create a “pattern recognition” approach to prosthesis control. This approach requires users to “teach” the device to recognize specific patterns of muscle activity and translate them into commands – such as opening or closing a prosthetic hand.

“Pattern recognition control requires patients to go through a lengthy process of training their prosthesis,” says He (Helen) Huang, a professor in the joint biomedical engineering program at North Carolina State University and the University of North Carolina at Chapel Hill. “This process can be both tedious and time-consuming.

“We wanted to focus on what we already know about the human body,” says Huang, who is senior author of a paper on the work. “This is not only more intuitive for users, it is also more reliable and practical.

“That’s because every time you change your posture, your neuromuscular signals for generating the same hand/wrist motion change. So relying solely on machine learning means teaching the device to do the same thing multiple times; once for each different posture, once for when you are sweaty versus when you are not, and so on. Our approach bypasses most of that.”

Instead, the researchers developed a user-generic, musculoskeletal model. The researchers placed electromyography sensors on the forearms of six able-bodied volunteers, tracking exactly which neuromuscular signals were sent when they performed various actions with their wrists and hands. This data was then used to create the generic model, which translated those neuromuscular signals into commands that manipulate a powered prosthetic.

“When someone loses a hand, their brain is networked as if the hand is still there,” Huang says. “So, if someone wants to pick up a glass of water, the brain still sends those signals to the forearm. We use sensors to pick up those signals and then convey that data to a computer, where it is fed into a virtual musculoskeletal model. The model takes the place of the muscles, joints and bones, calculating the movements that would take place if the hand and wrist were still whole. It then conveys that data to the prosthetic wrist and hand, which perform the relevant movements in a coordinated way and in real time – more closely resembling fluid, natural motion.

“By incorporating our knowledge of the biological processes behind generating movement, we were able to produce a novel neural interface for prosthetics that is generic to multiple users, including an amputee in this study, and is reliable across different arm postures,” Huang says.

And the researchers think the potential applications are not limited to prosthetic devices.

“This could be used to develop computer-interface devices for able-bodied people as well,” Huang says. “Such as devices for gameplay or for manipulating objects in CAD programs.”

In preliminary testing, both able-bodied and amputee volunteers were able to use the model-controlled interface to perform all of the required hand and wrist motions – despite having very little training.

“We’re currently seeking volunteers who have transradial amputations to help us with further testing of the model to perform activities of daily living,” Huang says. “We want to get additional feedback from users before moving ahead with clinical trials.

“To be clear, we are still years away from having this become commercially available for clinical use,” Huang stresses. “And it is difficult to predict potential cost, since our work is focused on the software, and the bulk of cost for amputees would be in the hardware that actually runs the program. However, the model is compatible with available prosthetic devices.”

The researchers are also exploring the idea of incorporating machine learning into the generic musculoskeletal model.

“Our model makes prosthetic use more intuitive and reliable, but machine learning could allow users to gain more nuanced control by allowing the program to learn each person’s daily needs and preferences and better adapt to a specific user in the long term,” Huang says.

About author

Related Articles