Breaking News
October 24, 2018 - Loxo Oncology Announces Receipt of Breakthrough Therapy Designation from U.S. Food and Drug Administration for LOXO-292 for the Treatment of RET Fusion-Positive Thyroid Cancer
October 24, 2018 - Analysis of largest set of genomes from pregnant women reveals genetic links to disease, birth outcomes
October 24, 2018 - New vaccine strategy shows promise to protect chickens against serious respiratory disease
October 24, 2018 - First Asia Reference Center in Singapore
October 24, 2018 - New partnership aims to tackle cancer health disparities
October 24, 2018 - Two Roche Diagnostic tests identified as transformative
October 24, 2018 - Cocaine overdoses on the rise with fentanyl combo flooding the market
October 24, 2018 - Radiotherapy combined with androgen-deprivation therapy improves overall survival up to 10 years
October 24, 2018 - Spectrum Pharmaceuticals Receives FDA Approval of Khapzory (levoleucovorin) for Injection
October 24, 2018 - Researcher uses smartphone to detect breast cancer gene
October 24, 2018 - Advanced breast cancer patients can benefit from immunotherapy-chemotherapy combination
October 24, 2018 - Stress related to social stigma negatively impacts mental health of autistic people
October 24, 2018 - New 17-item questionnaire may help detect GI disorders in children with autism
October 24, 2018 - 12% of frequent marijuana smokers experience cannabis withdrawal syndrome
October 24, 2018 - Immune therapy may be potential treatment option for patients with hard-to-treat ankylosing spondylitis
October 24, 2018 - Poor Experience With PCP Linked to Hospitalization in CKD
October 23, 2018 - Dummies not to blame for common speech disorder in kids
October 23, 2018 - The future of ethics and biomedicine: An interview
October 23, 2018 - X4 Pharmaceuticals announces clinical data of X4P-001-IO and Opdivo in patients with clear cell renal cell carcinoma
October 23, 2018 - FDA targets 465 websites that sell potentially dangerous, unapproved drugs
October 23, 2018 - New approach may lead to better diagnostic techniques for autoimmune disorders
October 23, 2018 - Innovative computer software sheds new light on genetic processes underlying deadly diseases
October 23, 2018 - Juul Drawing Lots of Teen Followers on Twitter
October 23, 2018 - WHO says Zika risk low in Pacific ahead of Meghan visit
October 23, 2018 - A deeper look at ‘Reflecting Frankenstein’
October 23, 2018 - Breastfeeding can have protective affect against high blood pressure in women, confirms study
October 23, 2018 - Epigenetic modifications may contribute to Alzheimer’s Disease
October 23, 2018 - Volunteering for peer counseling programs benefits people with lupus
October 23, 2018 - Cancer treatment may undergo a paradigm shift to immunotherapy soon
October 23, 2018 - Study uncovers new mechanism of action in a first-line drug for diabetes
October 23, 2018 - New type of molecule shows early promise against treatment-resistant prostate cancer
October 23, 2018 - Lancet publishes pioneering study of Aimovig’s efficacy in episodic migraine patients
October 23, 2018 - Scientists grow functioning human neural networks in 3D from stem cells
October 23, 2018 - Using mushrooms as a prebiotic may help improve glucose regulation
October 23, 2018 - New ENT clinic treats children in Zimbabwe
October 23, 2018 - CUIMC Celebrates 2018-2019, Issue 2
October 23, 2018 - Immunotherapy is better than chemotherapy as first-line treatment for advanced head and neck cancer
October 23, 2018 - Intake of painkillers during pregnancy linked to early puberty in future offspring
October 23, 2018 - ConnectToBrain project seeks to improve techniques for brain stimulation in current clinical use
October 23, 2018 - Polyganics begins first-in-human clinical trial of LIQOSEAL for reducing CSF leakage
October 23, 2018 - Gut bacterial community of healthy adults recovers after short-term exposure to broad-spectrum antibiotics
October 23, 2018 - Lowering systolic blood pressure does not damage the kidneys, shows study
October 23, 2018 - Incyte Announces Positive Data from Phase 2b Trial of Ruxolitinib Cream in Patients with Atopic Dermatitis
October 23, 2018 - Cardiovascular admissions more common among most deprived
October 23, 2018 - Targeted drug and hormone therapy combination extends breast cancer survival
October 23, 2018 - Map of human liver cells reveals molecular make-up of individual cells
October 23, 2018 - Drugs approved for breast cancer treatment are effective and well tolerated in men
October 23, 2018 - EKF introduces new hand-held lactate analyzer for rapid sports performance monitoring
October 23, 2018 - Researchers identify common genetic connection in lung conditions
October 23, 2018 - Forbius initiates Phase 2a trial evaluating efficacy, safety of AVID100 in patients with squamous NSCLC
October 23, 2018 - Immunotherapy achieves major pathological response in early-stage mismatch repair deficient colon cancer
October 23, 2018 - New discovery may lead to better treatment options for pancreatic cancer patients
October 23, 2018 - FDA Approves Dupixent (dupilumab) for Moderate-to-Severe Asthma
October 23, 2018 - Researchers identify immune culprits linked to inflammation and bone loss in gum disease
October 23, 2018 - Despite lower risk factors, black men have higher rates of recidivism
October 23, 2018 - Study finds why pregnant women in mainland China, Hong Kong and Taiwan prefer cesarean delivery
October 23, 2018 - AbbVie’s U-ACHIEVE Phase 2b/3 dose-ranging study improves outcomes in patients with ulcerative colitis
October 23, 2018 - NCI grant awarded to Abramson Cancer Center to study CAR T cells In solid tumors
October 23, 2018 - Scientists use electron microscope to study chemical transformation in catalytic cross-coupling reaction
October 23, 2018 - Research offers new hope to men who received childhood cancer treatment
October 23, 2018 - New medical navigation system receives international innovation award
October 23, 2018 - Adverse Childhood Experiences Tied to Burnout in BSN Students
October 23, 2018 - High levels of oral disease among elite athletes affecting performance
October 23, 2018 - Study examines effect of immediate vs delayed pushing during labor on delivery outcomes
October 23, 2018 - LU-RRTC to spearhead capacity-building efforts for racial and ethnic populations
October 23, 2018 - Maintenance therapy with olaparib improves progression-free survival in advanced ovarian cancer patients
October 23, 2018 - Organic food may protect against cancers finds study
October 23, 2018 - Interweaving anxiety disorder associated with stuttering remains unrecognized
October 23, 2018 - Cannabis oil shown to significantly improve Crohn’s disease symptoms
October 23, 2018 - Knowledge of sex differences in lower urinary tract may help stimulate breakthroughs in diagnosis, management
October 23, 2018 - Common antibodies associated with myocardial infarction
October 23, 2018 - Study reveals new treatment option for women with advanced breast cancer resistant to hormone therapy
October 23, 2018 - Brain’s ‘Self-Control’ Center May Be Key to Weight-Loss Success
October 23, 2018 - Prosthetic valve mismatches common in transcatheter valve replacement, ups risk of death
October 23, 2018 - Can virtual reality help people become more compassionate?
October 23, 2018 - Screen time eclipsed outdoor time for most students, shows study
October 23, 2018 - SLU researcher seeks to find solutions for ‘chemo brain’ symptoms and side effects of opioids
October 23, 2018 - Plastics now commonly found in human stools
October 23, 2018 - Zoledronic acid increases disease-free survival in premenopausal women with HR+ early breast cancer
October 23, 2018 - Cancer survivors at risk for heart failure during, after pregnancy
Study unravels how nuclear pore complexes transport mRNAs out of the nucleus

Study unravels how nuclear pore complexes transport mRNAs out of the nucleus

image_pdfDownload PDFimage_print

Standing guard between a cell’s nucleus and its main chamber, called the cytoplasm, are thousands of behemoth protein structures called nuclear pore complexes, or NPCs. NPCs are like the bouncers of a cell’s nucleus, tightly guarding exactly what goes in and out. Each structure contains about 1,000 protein molecules, making NPCs some of the biggest protein complexes in our bodies. One of the most notable clients of NPCs is a class of molecules known as messenger RNAs, or mRNAs. These are the messengers that carry genetic instructions from the nucleus to the cytoplasm, where they are then translated into proteins.

But how the NPC transports the mRNAs out of the nucleus is still a mystery.

“The mRNAs are one of the largest cargoes carried through NPCs, and the whole process occurs in just a fraction of a second,” says André Hoelz, professor of chemistry at Caltech, a Heritage Medical Research Institute (HMRI) Investigator, and a Howard Hughes Medical Institute (HHMI) Faculty Scholar. “How this works has been one of the greatest unsolved problems in biology.”

NPCs are associated with several diseases. Mutations to proteins within the complex have been linked to motor neuron diseases such as amyotrophic lateral sclerosis (ALS), and people with Huntington’s disease are known to have defects in the function of their NPCs.

In a new study in the June 13 issue of Nature Communications, Hoelz and his group–spearheaded by Daniel Lin (PhD ’17), a former graduate student at Caltech now at Whitehead Institute for Biomedical Research at MIT, and Sarah Cai, an undergraduate student at Caltech–report the first atomic-scale look at the specific components of human NPCs responsible for dropping mRNAs off in the cytoplasm. For an mRNA to be transported through an NPC, it must be tagged with a nuclear export factor, a type of small protein. That tag is like a ticket that allows the mRNA to enter the central transport channel of the NPC. Once the mRNA reaches the cytoplasmic side, it must surrender the ticket–otherwise, the mRNA could travel back into the nucleus, and the proteins it encodes wouldn’t get made.

Through a series of experiments involving X-ray crystallography, biochemistry, enzymology, and other methodologies, the researchers were able to show how this process of un-tagging the mRNA molecules works in human cells for the first time.

“It’s as if we had snapshots before, and now we have a movie showing us exactly what happens at the molecular scale when mRNAs are dropped off in the cell’s cytoplasm,” says Lin.

The team’s new findings were made possible by obtaining a series of crystal structures of a few key protein components of a human NPC. One of those components is called Gle1. The three-dimensional structure of this protein had been obtained before in yeast, but doing so for its human variant had remained a challenge. By studying the biochemical properties of yeast Gle1, the researchers were able to figure out that another protein, called Nup42, was required to stabilize Gle1. Knowing this, the team was able to purify human Gle1 from cells in high quantities for the first time, and then, using Caltech’s Molecular Observatory beamline at the Stanford Synchrotron Radiation Lightsource, obtain its crystal structure.

“Even with billions of years of evolution between yeast and humans, there are still aspects of our bio-machinery that remain the same,” says Lin.

With the ability to purify human Gle1, the researchers set about studying how mutations affect its structure. They looked at several specific mutations of Gle1 known to be associated with a motor neuron disease called lethal contracture congenital syndrome 1 (LCCS1) and discovered that the mutated versions of the protein were not as stable.

“Gle1 is essential for life to function properly,” says Hoelz, “so any mutations that cause it to be less stable are going to cause problems.”

The researchers then looked at the structure of Gle1 bound to a protein called DDX19–which is responsible for un-tagging the mRNA molecules after they pass through the NPC. Gle1 is required to activate DDX19, and–until now–it was thought that a small molecule called inositol hexaphosphate (IP6) acted like a tether between Gle1 and DDX19, allowing the activation to occur.

“We found that IP6 was not required in humans, and that was a surprise because it is required in yeast, and IP6 dependence was previously believed to occur across all species,” says Cai. “While there are some similarities between yeast and human proteins, there are also crucial differences.”

What’s more, the new research shows in atomic-level detail exactly how the un-tagging of the mRNA works. This kind of structural information could be used in the future to help in the design of therapeutic drugs for motor neuron diseases.

Hoelz says that Lin and Cai really exceeded expectations for this research. “They wanted to discover something new, and they went above and beyond with this project,” he says. “They made it happen. This is a Caltech moment.”

Tagged with:

About author

Related Articles