Breaking News
July 18, 2018 - Nitrate-cured meats may contribute to mania, study finds
July 18, 2018 - Why men may recover more quickly from influenza infections than women
July 18, 2018 - KemPharm Announces Top Line Results from KP415.E01 Efficacy and Safety Trial in Children With ADHD
July 18, 2018 - Self-control and obesity: Gender matters in children
July 18, 2018 - Bioengineers, diabetes researchers convene to discuss future concepts for precision medicine
July 18, 2018 - Practicing yoga benefits pregnant women, study suggests
July 18, 2018 - FDA Approves Symtuza (D/C/F/TAF), the First and Only Complete Darunavir-Based Single-Tablet Regimen for the Treatment of HIV-1 Infection
July 18, 2018 - Deep data dive helps predict cerebral palsy
July 18, 2018 - Stricter firearm legislation associated with reduced murder and suicide rates
July 18, 2018 - Physical and sexual abuse in childhood associated with endometriosis risk
July 18, 2018 - Omega 3 supplements do not reduce risk of heart disease, stroke or death
July 18, 2018 - GSA’s new publication provides support for safe use of OTC analgesics by older adults
July 18, 2018 - Researchers receive grant from U.S. Department of Education to study children with HFASD
July 18, 2018 - Early childhood adversity increases sensitivity of the body’s immune response to cocaine
July 18, 2018 - Parental incarceration affects health behaviors of children in adulthood
July 18, 2018 - Researchers find that yellow fever and Asian tiger mosquitoes can carry new virus
July 18, 2018 - Two Regimens Fail to Stop Declines in β-Cell Function
July 18, 2018 - Researchers apply computing power to track the spread of cancer
July 18, 2018 - Olfactory receptors play pathophysiological role in all organs than merely smell perception
July 18, 2018 - Fish consumption associated with lower risk of early death
July 18, 2018 - MR Solutions’ 7T MRI imaging system installed at University of Hawaii
July 18, 2018 - Humorous ads screened around World Cup game achieve higher biometric response than sporty ads
July 18, 2018 - New study demonstrates little effect of hormone therapy on artery thickness
July 18, 2018 - A 3-Pronged Plan to Cut Type 2 Diabetes Risk
July 18, 2018 - New clues to sepsis may speed diagnosis
July 18, 2018 - Stars of Stanford Medicine: Improving cardiovascular health in Africa and beyond
July 18, 2018 - Heart attack risk continues to increase among pregnant women, study finds
July 18, 2018 - Few tips to help avoid sunburns in summer
July 18, 2018 - High-fat diet and systemic inflammation contribute to progression of prostate cancer
July 18, 2018 - Researchers develop 3D map of gene interactions that play key role in heart disease
July 18, 2018 - Conservative management of lung subsolid nodules reduces overtreatment and unnecessary surgery
July 18, 2018 - Report warns of dog illness that can spread to owners
July 18, 2018 - A winning essayist’s tips for keeping track of scientific facts
July 18, 2018 - Researchers seek to understand role of APOE mutation in Alzheimer’s disease
July 18, 2018 - Animal studies reveal brain changes responsible for appetite effects of cannabis
July 18, 2018 - New ZEISS ZEN Intellesis machine allows segmentation of correlative microscopy
July 18, 2018 - Study findings highlight importance of early detection of SMA through newborn screening
July 18, 2018 - Results of Phase III (PIX306) Trial Evaluating Progression-Free Survival of Pixuvri (pixantrone) Combined with Rituximab in Patients with Aggressive B-cell Non-Hodgkin Lymphoma
July 18, 2018 - Diabetes researchers find switch for fatty liver disease
July 18, 2018 - The future of the microbiome: A conversation
July 18, 2018 - States attacking ACA would hurt most if shield on preexisting conditions were axed
July 18, 2018 - Novel delivery system for bacteriophages could offer new way to battle lung infections
July 18, 2018 - PTSD may increase risk of stroke, heart attack in World Trade Center response crews
July 18, 2018 - Finding the right protective eyewear for young athletes
July 18, 2018 - Routine screening, treatment could help stem nationwide opioid epidemic
July 17, 2018 - AI and radar technologies could help diabetics manage their disease
July 17, 2018 - New Stanford algorithm could improve diagnosis of many rare genetic diseases
July 17, 2018 - Burdensome symptoms of eczema can lead to impaired quality of life, shows study
July 17, 2018 - Sartorius Stedim Biotech and Penn State partner to advance teaching, research in biotechnology
July 17, 2018 - Researchers map family trees of cancer cells to understand how AML responds to new drug
July 17, 2018 - Mortality from heart failure remains higher in women than men
July 17, 2018 - Can-Fite BioPharma receives Australian and Chinese patents for new drug to treat erectile dysfunction
July 17, 2018 - AAP: Lawnmowers Pose Serious Injury Risk to Children
July 17, 2018 - Fewer U.S. kids are getting cavities
July 17, 2018 - Differences in brain’s reward circuit may explain social deficits in autism
July 17, 2018 - YCC researchers suggest promising treatment for two rare inherited cancer syndromes
July 17, 2018 - FAU and partners receive NIH research grant to shed light on sleep loss and metabolic disorders
July 17, 2018 - Advanced MRI technique predicts risk of disease progression in MS
July 17, 2018 - Health Tip: Microwave Safely – Drugs.com MedNews
July 17, 2018 - New target for treating heart failure identified
July 17, 2018 - Biodesign fellows simplify heart rhythm monitoring
July 17, 2018 - Study reveals new risk genes for allergic rhinitis
July 17, 2018 - Community college education can increase physician diversity and access to primary care
July 17, 2018 - Inflection Biosciences’ dual mechanism inhibitor shows promise as treatment for CLL
July 17, 2018 - Researchers uncover how cells invite corrupted proteins inside
July 17, 2018 - Large international study finds new risk genes for hay fever
July 17, 2018 - Studies show HORIBA’s new hematology analyzer improves POCT and care of oncology patients
July 17, 2018 - New website aims to make yoga safer for everyone
July 17, 2018 - Long-term survival worse for black survivors of in-hospital cardiac arrest
July 17, 2018 - Stanford data analyst’s childhood inspires his research: A Q&A
July 17, 2018 - Preventability of hospital readmissions changes over time, study reveals
July 17, 2018 - Nursing notes can help predict if ICU patients will survive
July 17, 2018 - Most older adults with probable dementia found to be either undiagnosed or unaware of it
July 17, 2018 - Vallum receives FDA clearance to market PEEK spinal interbody fusion device
July 17, 2018 - Okayama University research could improve prognosis of diabetic kidney disease
July 17, 2018 - Researchers develop machine learning method to predict unknown gene functions of microbes
July 17, 2018 - Homogenous BTK occupancy assay used in tirabrutinib clinical studies
July 17, 2018 - Study identifies new genes linked to heart function and development
July 17, 2018 - NeuroTrauma Sciences and Henry Ford join hands to advance exosome technology
July 17, 2018 - Improved methods to measure enterococci concentrations in recreational water
Investigating Enamel Nanostructure with Nanoindentation

Investigating Enamel Nanostructure with Nanoindentation

image_pdfDownload PDFimage_print

An interview with Dr. S Amini, conducted by Jake Wilkinson, MSc

Why are you interested in biomaterials?

As a teenager, I was amazed by nature and wondered why people lost their teeth permanently, while sharks regenerated their teeth regularly? These questions were always on my mind.

© theowl84/Shutterstock.com

My primary interest was solid mechanics. During my master’s program, I got familiar with biomaterials, and started a project with the School of Dentistry on tooth restorative materials. The interest in biological materials further developed during my Ph.D. program in Biological and Biomimetic Materials Laboratory (BBML) at Nanyang Technological University, Singapore.

My project was mainly focused on biological hard tissues. Lately, I moved to the Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, where I have the chance to closely collaborate with our different research groups and explore different biological models. Currently, I am working on structural properties and mechanical responses of damage-resistance biological models, such as shark teeth enameloid and human teeth enamel.

How do synthetic composites compare to the properties of teeth?

Minerals and proteins, the building blocks of the natural enamel, entangled in complex shapes to display the properties that go far greater than their individual properties. These hierarchical structures, which are composed of available and simple building blocks, are far beyond anything that we can produce synthetically. In addition, we are not able to mimic the gradients in synthetic materials that we can see in biological materials, such as the human tooth. These gradients have a crucial role in mechanical response and performance of the biological models.

We can now artificially use ceramic or polymer composites to repair our teeth, but we never regain the original properties since we induce artificial interfaces and replace the graded structure of the tooth with a homogenous material with mismatched properties. Nature has adopted complex design strategies to achieve high-performance biological composites that overcome harsh external stimuli, while hindering stress-mismatch failure occurring during cyclic loading.

How have you been using nanoindentation to further your understanding of biomaterials?

Mechanical characterization of materials dates back a few hundred years. The diverse studies resulted in a comprehensive data base for mechanical response of materials. However, due to technological limitations, engineers were not able to characterize the mechanical response of the microstructures to differentiate the behaviour of the building blocks, or the role of their spatial arrangements.

Thanks to recent advances in mechanical characterization techniques, such as atomic force microscopy and nanoindentation, we are now able to characterize the microstructural features of the materials. These advances allow us to see the role of micro- and nanostructures on the mechanical response of the overall structures. For example, we can understand how presence of minerals and their arrangement can affect the hardness or toughness of the samples.

What imaging techniques do you use alongside nanoindentation as part of your research?

I have used different imaging techniques, such as optical and electron microscopy, micro CT imaging, and Raman spectroscopic imaging, alongside my nanoindentation studies. Combining these techniques, we are able to correlate the structural and mechanical properties of the samples.

How does performing a nanoindentation experiment on biological material compare to conventional nanoindentation experiments?

There are lots of studies surrounding homogenous, inorganic or polymeric materials. Therefore, most of the testing methodologies are developed for these materials.

Conversely, organic phases are sensitive to humidity and temperature, and they can simply denature if not stored and prepared properly. As a result, specific protocols are needed to make sure that the samples keep their native characteristics.

Why is the use of an environmental chamber important for your research?

We frequently use humidity chambers so that the extracted mechanical properties are not affected by dehydration. The effect of dehydration depends on degree of mineralization of the samples. For example, if it’s a highly mineralized sample, dehydration does not significantly affect the mechanical properties. However, for soft samples that are highly organic, like skin and muscle, then environmental control (mainly humidity) is necessary. Tissues need to be tested at their functional environment; otherwise, they won’t have the same mechanical response.

Where do you expect our understanding of biomaterials to take us?

Our understanding of biomaterials continues to develop. The systems we can use to measure them are becoming increasingly sophisticated, empowering us to discover more and more about their structure and behaviour. My field is based on the characterisation of these materials not producing them, although the breakthroughs we make feed directly to the material engineers who use this information to create increasingly powerful materials.

New engineering techniques are bringing us closer to creating biomimetic materials, which will be able to match those we see in the natural world. For example, 3D printing will allow us to emulate the complex 3D or interwoven structure seen in biological models that results in its amazing properties. We will be able to accurately replicate the patterns we see in biological materials and create engineering materials that accurately mimic them. However, we are still limited by size and materials.

What value do you see in expert-led conferences such as Nanobrüken?

From my personal experience, even with the access through the internet and journals, scientific groups with different backgrounds all around the world are not connected in the way they should be. Having these interdisciplinary seminars and discussions, scientists can come up with new ideas and innovative solutions for their own research. Furthermore, you get some cases of a team working to design or develop a test method for their research; however, a similar method that has already been applied for years in a different field can be customized for your own research.

Conferences focusing on techniques instead of research area, like Nanobrüken, are helpful, because no matter what your background, you can attend and get new ideas in other fields. It facilitates the sharing of ideas and helps us all perform our research more effectively.

About Dr. Shahrouz Amini

Dr Amini is a post-doctoral researcher at the Max Planck Institute of Colloids and Interface, Department of Biomaterials (Supervisor: Prof. Peter Fratzl). With his research background on the mechanical characterization and properties of biological materials, Dr Amini is conducting studies on damage tolerant biological models such as tooth enamel.

Shahrouz received his PhD degree from Nanyang Technological University, Department of Materials Science and Engineering (Advisor: Prof. Ali Miserez). In 2016, he was awarded a “Research Excellence Award” for his PhD work on mantis shrimp dactyl club and its toughening strategies.

Tagged with:

About author

Related Articles