Breaking News
July 18, 2018 - Nitrate-cured meats may contribute to mania, study finds
July 18, 2018 - Why men may recover more quickly from influenza infections than women
July 18, 2018 - KemPharm Announces Top Line Results from KP415.E01 Efficacy and Safety Trial in Children With ADHD
July 18, 2018 - Self-control and obesity: Gender matters in children
July 18, 2018 - Bioengineers, diabetes researchers convene to discuss future concepts for precision medicine
July 18, 2018 - Practicing yoga benefits pregnant women, study suggests
July 18, 2018 - FDA Approves Symtuza (D/C/F/TAF), the First and Only Complete Darunavir-Based Single-Tablet Regimen for the Treatment of HIV-1 Infection
July 18, 2018 - Deep data dive helps predict cerebral palsy
July 18, 2018 - Stricter firearm legislation associated with reduced murder and suicide rates
July 18, 2018 - Physical and sexual abuse in childhood associated with endometriosis risk
July 18, 2018 - Omega 3 supplements do not reduce risk of heart disease, stroke or death
July 18, 2018 - GSA’s new publication provides support for safe use of OTC analgesics by older adults
July 18, 2018 - Researchers receive grant from U.S. Department of Education to study children with HFASD
July 18, 2018 - Early childhood adversity increases sensitivity of the body’s immune response to cocaine
July 18, 2018 - Parental incarceration affects health behaviors of children in adulthood
July 18, 2018 - Researchers find that yellow fever and Asian tiger mosquitoes can carry new virus
July 18, 2018 - Two Regimens Fail to Stop Declines in β-Cell Function
July 18, 2018 - Researchers apply computing power to track the spread of cancer
July 18, 2018 - Olfactory receptors play pathophysiological role in all organs than merely smell perception
July 18, 2018 - Fish consumption associated with lower risk of early death
July 18, 2018 - MR Solutions’ 7T MRI imaging system installed at University of Hawaii
July 18, 2018 - Humorous ads screened around World Cup game achieve higher biometric response than sporty ads
July 18, 2018 - New study demonstrates little effect of hormone therapy on artery thickness
July 18, 2018 - A 3-Pronged Plan to Cut Type 2 Diabetes Risk
July 18, 2018 - New clues to sepsis may speed diagnosis
July 18, 2018 - Stars of Stanford Medicine: Improving cardiovascular health in Africa and beyond
July 18, 2018 - Heart attack risk continues to increase among pregnant women, study finds
July 18, 2018 - Few tips to help avoid sunburns in summer
July 18, 2018 - High-fat diet and systemic inflammation contribute to progression of prostate cancer
July 18, 2018 - Researchers develop 3D map of gene interactions that play key role in heart disease
July 18, 2018 - Conservative management of lung subsolid nodules reduces overtreatment and unnecessary surgery
July 18, 2018 - Report warns of dog illness that can spread to owners
July 18, 2018 - A winning essayist’s tips for keeping track of scientific facts
July 18, 2018 - Researchers seek to understand role of APOE mutation in Alzheimer’s disease
July 18, 2018 - Animal studies reveal brain changes responsible for appetite effects of cannabis
July 18, 2018 - New ZEISS ZEN Intellesis machine allows segmentation of correlative microscopy
July 18, 2018 - Study findings highlight importance of early detection of SMA through newborn screening
July 18, 2018 - Results of Phase III (PIX306) Trial Evaluating Progression-Free Survival of Pixuvri (pixantrone) Combined with Rituximab in Patients with Aggressive B-cell Non-Hodgkin Lymphoma
July 18, 2018 - Diabetes researchers find switch for fatty liver disease
July 18, 2018 - The future of the microbiome: A conversation
July 18, 2018 - States attacking ACA would hurt most if shield on preexisting conditions were axed
July 18, 2018 - Novel delivery system for bacteriophages could offer new way to battle lung infections
July 18, 2018 - PTSD may increase risk of stroke, heart attack in World Trade Center response crews
July 18, 2018 - Finding the right protective eyewear for young athletes
July 18, 2018 - Routine screening, treatment could help stem nationwide opioid epidemic
July 17, 2018 - AI and radar technologies could help diabetics manage their disease
July 17, 2018 - New Stanford algorithm could improve diagnosis of many rare genetic diseases
July 17, 2018 - Burdensome symptoms of eczema can lead to impaired quality of life, shows study
July 17, 2018 - Sartorius Stedim Biotech and Penn State partner to advance teaching, research in biotechnology
July 17, 2018 - Researchers map family trees of cancer cells to understand how AML responds to new drug
July 17, 2018 - Mortality from heart failure remains higher in women than men
July 17, 2018 - Can-Fite BioPharma receives Australian and Chinese patents for new drug to treat erectile dysfunction
July 17, 2018 - AAP: Lawnmowers Pose Serious Injury Risk to Children
July 17, 2018 - Fewer U.S. kids are getting cavities
July 17, 2018 - Differences in brain’s reward circuit may explain social deficits in autism
July 17, 2018 - YCC researchers suggest promising treatment for two rare inherited cancer syndromes
July 17, 2018 - FAU and partners receive NIH research grant to shed light on sleep loss and metabolic disorders
July 17, 2018 - Advanced MRI technique predicts risk of disease progression in MS
July 17, 2018 - Health Tip: Microwave Safely – Drugs.com MedNews
July 17, 2018 - New target for treating heart failure identified
July 17, 2018 - Biodesign fellows simplify heart rhythm monitoring
July 17, 2018 - Study reveals new risk genes for allergic rhinitis
July 17, 2018 - Community college education can increase physician diversity and access to primary care
July 17, 2018 - Inflection Biosciences’ dual mechanism inhibitor shows promise as treatment for CLL
July 17, 2018 - Researchers uncover how cells invite corrupted proteins inside
July 17, 2018 - Large international study finds new risk genes for hay fever
July 17, 2018 - Studies show HORIBA’s new hematology analyzer improves POCT and care of oncology patients
July 17, 2018 - New website aims to make yoga safer for everyone
July 17, 2018 - Long-term survival worse for black survivors of in-hospital cardiac arrest
July 17, 2018 - Stanford data analyst’s childhood inspires his research: A Q&A
July 17, 2018 - Preventability of hospital readmissions changes over time, study reveals
July 17, 2018 - Nursing notes can help predict if ICU patients will survive
July 17, 2018 - Most older adults with probable dementia found to be either undiagnosed or unaware of it
July 17, 2018 - Vallum receives FDA clearance to market PEEK spinal interbody fusion device
July 17, 2018 - Okayama University research could improve prognosis of diabetic kidney disease
July 17, 2018 - Researchers develop machine learning method to predict unknown gene functions of microbes
July 17, 2018 - Homogenous BTK occupancy assay used in tirabrutinib clinical studies
July 17, 2018 - Study identifies new genes linked to heart function and development
July 17, 2018 - NeuroTrauma Sciences and Henry Ford join hands to advance exosome technology
July 17, 2018 - Improved methods to measure enterococci concentrations in recreational water
Genes found related to the reduction of proteins that contribute to Alzheimer’s onset

Genes found related to the reduction of proteins that contribute to Alzheimer’s onset

image_pdfDownload PDFimage_print
Diagram of the brain of a person with Alzheimer’s Disease. Credit: Wikipedia/public domain.

In the ongoing quest for a successful treatment for Alzheimer’s disease, a team of scientists from several leading research institutions have created a map of the molecular network in the aging brain. Molecular networks are cellular and subcellular structures in an organism and the structures’ physical interaction between molecules, RNA, or proteins.

The researchers used their map to identify two new Alzheimer’s disease target genes—that is, genes that can be deleted, added, or modified, in the ongoing quest for a successful treatment for the disease. The team presented their findings in a paper published in Nature Neuroscience on May 25.

Led by principal investigators Dr. David A. Bennett at Rush University Medical Center in Chicago and Dr. Philip L. De Jager at Columbia University in New York, the research team is part of the Accelerating Medicines Program for Alzheimer’s disease. Known as the AMP-AD, the program seeks to leverage advances in analytic methods and large-scale molecular profiles of the aging brain to identify novel therapeutic targets for Alzheimer’s disease.

The National Institute on Aging and the Foundation for the National Institutes of Health spearheaded the development of AMP-AD in collaboration with several industry and non-profit partners. The program launched in 2013.

Map distinguishes between events leading to brain pathology and to loss of cognitive function

The network described in the Nature Neuroscience manuscript accounts for all older people, not just those that meet certain diagnostic guidelines. Further, it separates molecular events that lead to changes in brain tissue (pathology) from those involved in loss of cognitive function, which is the true target of therapeutic efforts.

“Prior network approaches had not considered the detailed change in cognitive state over time of older individuals,” said Bennett. “Instead, they had relied on comparisons of cases from a dementia clinic with volunteers who after their deaths came to autopsy without ever developing dementia. This does not capture the variability over time exhibited by a diverse population of older individuals.”

The burden of Alzheimer’s disease on our aging human populations is growing rapidly, but current therapeutic strategies targeting a small number of proteins have yet to yield a successful treatment.

Analysis honed in on genes most likely to drive cognitive decline

The study drew on data about the deeply characterized subjects from two community-based studies based at the Rush Alzheimer Disease Center. Participants in these studies receive extensive medical testing and evaluation while alive and donate their brains to research upon their deaths. None of the participants had a diagnosis of dementia when they enrolled in the study, but some later developed it.

The investigators have created a unique resource that links molecular changes in nearly 500 older brains profiled in this study to both the individual trajectories of participants’ change in cognition over multiple years prior to death and detailed measures of Alzheimer’s disease and other common brain pathologies measured after death. “We have a detailed picture of brain function before death and an extensive evaluation of the molecular features of each individual brain,” De Jager observed.

Co-lead author Chris Gaiteri, Ph.D., also from the Rush Alzheimer’s Disease Center, added that “unlike traditional studies, all possible outcomes and molecular events are considered simultaneously, enabling us to prioritize a few large groups of genes that are most likely to lead directly to cognitive decline and/or brain pathology, instead of having to focus on a large list of individual genes.”

His co-lead author, Sara Mostafavi, Ph.D., of the University of British Columbia, extended this comment, “The strength of our analytic approach is that it makes no assumptions as far as what genes are important,” she said.

“While we find thousands of genes associated with cognitive decline, we do not simply go for the strongest gene. We find patterns that lead to cognitive decline and then prioritize a small subset of genes that appear to be driving these large-scale changes.”

Experiment reduced genes’ production of protein that contributes to Alzheimer’s

These so called “driver genes” are potentially excellent candidates or targets for developing Alzheimer’s disease therapies. However, statistical analyses are not enough.

Therefore co-investigator Tracy Young-Pearse, Ph.D., from Brigham and Women’s Hospital designed an experiment in which some of these target genes were perturbed to see if this change affected known molecules involved in Alzheimer’s disease.

“When they were altered in human astrocytes, a type of brain cell that plays a key role in maintaining brain function, two of the 14 genes predicted to be driver genes by the network displayed a reduction in the secretion of amyloid beta, a protein that contributes to the onset of Alzheimer’s disease,” Young-Pearse said. These two genes make proteins and the approach raises the possibility that finding drugs that affect those proteins could also lower the production of amyloid beta. Dr. Bennett and his colleagues recently measured a number of the proteins in the network to see if they could replicate the predictions from the network map.

Using the network to predict the 14 driver genes itself was a scientific feat akin to finding the proverbial needle in a haystack, given that the brain map includes about 14,000 genes.

“This study is a milestone in the study of Alzheimer’s disease and the aging brain, said De Jager. “We established a molecular network that not only predicts Alzheimer’s disease genes that can be validated experimentally but also can be repurposed to study very different molecular events involved in brain aging, such as stroke, and the fundamental function of the brain itself.”

Sharing science to spur discoveries

All data and network models were made available to share with the scientific community via the AMP-AD Knowledge Portal and the Rush Alzheimer’s Disease Center Resource Sharing Hub before the publication of the manuscript to enable other investigators to make us of the data and underlying observations for their own studies and to allow them to confirm the results of the study independently.

“This study is the culmination of efforts by the NIA, multiple pharmaceutical industry partners, and a tight-knit group of academic investigators to provide a novel, unbiased perspective on Alzheimer’s disease biology,” said Bennett. “Importantly, this approach does not focus on a single gene of interest, but rather searches for the key nodal point in a network where an intervention may be most likely to have an effect on a devastating disease that remains untreated today.”

While the two genes identified as candidates by the network approach and its validation need further study before they can be used as the basis for drug development efforts, this report is an important milestone for AMP-AD Target Discovery program. It shows the potential of the open science research model to deliver new disease insights with high translational potential and to create unique research resources for the community of pharmaceutical industry, small biotech and academic investigators interested in diversifying the therapeutic approaches for AD and other diseases of the aging brain.


Explore further:
Genes associated with resilience against brain pathology identified

More information:
Sara Mostafavi et al. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer’s disease, Nature Neuroscience (2018). DOI: 10.1038/s41593-018-0154-9

Journal reference:
Nature Neuroscience

Provided by:
Rush University Medical Center

Tagged with:

About author

Related Articles