Breaking News
August 16, 2018 - Brown University researchers reveal key physical properties of ‘giant’ cancer cells
August 16, 2018 - Regular resistance training improves exercise motivation
August 16, 2018 - Feds urge states to encourage cheaper plans off the exchanges
August 16, 2018 - Seven activities that prevent you from getting quality sleep during summer
August 16, 2018 - Five ways to tell if your baby is getting enough milk from breastfeeding
August 16, 2018 - From Pigs to Peacocks, What’s Up With Those ‘Emotional-Support Animals’?
August 16, 2018 - Breast cancers enlist the help of normal cells to help them spread and survive
August 16, 2018 - Engaging with “high-need” patients outside the clinic
August 16, 2018 - Research illuminates how online forum may offer suicide prevention support for males
August 16, 2018 - Researchers identify way to grow immune cells at large scale for preventing cancer reoccurrence
August 15, 2018 - Keck Medicine of USC’s hospitals ranked among nation’s best for the 10th consecutive year
August 15, 2018 - Researchers compare existing approaches for automating diagnostic procedures of skin lesions
August 15, 2018 - Autism risk determined by health of mom’s gut, research reveals
August 15, 2018 - WELL for Life challenges you to explore the great outdoors
August 15, 2018 - ‘Zombie’ gene protects elephants from cancer, study finds
August 15, 2018 - Ebola outbreak in Congo spreads to active combat zone
August 15, 2018 - Study highlights pollution exposure of babies in prams
August 15, 2018 - Study provides insight into link between sleep apnea and lipid metabolism
August 15, 2018 - New study focuses on promise of gene therapy for Amish nemaline myopathy
August 15, 2018 - Researchers discover new approach to alleviate chronic itch
August 15, 2018 - Uncovering the Mysteries of MS: Medical Imaging Helps NIH Researchers Understand the Tricky Disease
August 15, 2018 - Autistic people at greater risk of becoming homeless – new research
August 15, 2018 - New imaging technique can spot tuberculosis infection in an hour
August 15, 2018 - Scientists study effects of eating breakfast versus fasting overnight before exercise
August 15, 2018 - Talking with children about suicide could save lives
August 15, 2018 - Grip strength of children predicts future cardiometabolic health
August 15, 2018 - Innovative oncofertility program launched by RMA of New York and Mount Sinai Health System
August 15, 2018 - Study shows efficacy, safety of AAV5-based gene therapy to treat sheep model of achromatopsia
August 15, 2018 - Simple score helps predict which hospitalized heart attack patients are at high risk of readmissions
August 15, 2018 - New discoveries show how protein droplets do more than keep cells’ interiors tidy
August 15, 2018 - Study shows impact of optimizing airport flight patterns on human health
August 15, 2018 - Life experiences of feeling unwanted or unplanned associated with attachment insecurity
August 15, 2018 - ACS Briefing Discusses Use of Lessons From Combat Care
August 15, 2018 - Study identifies distinct origin of ADHD in children with history of brain injury
August 15, 2018 - IgG3 antibody stops B cells from fighting pathogens in HIV patients
August 15, 2018 - Scientists discover key vulnerability of mixed lineage leukemia
August 15, 2018 - College students may experience pressures from secondary exposure to opioid abuse
August 15, 2018 - Powerful new microscope reveals inner workings of human cells with unprecedented clarity
August 15, 2018 - Married people who fight nastily more likely to suffer from leaky guts, study suggests
August 15, 2018 - Working Out After Baby – Drugs.com MedNews
August 15, 2018 - Rheumatoid Factor (RF) Test: MedlinePlus Lab Test Information
August 15, 2018 - ADHD linked to an increased risk of injury in children, study finds
August 15, 2018 - UIC researchers receive NIH funding to develop a better way to regenerate bone or tissues
August 15, 2018 - Study reveals how immune cells in the brain influence sexual behavior
August 15, 2018 - Researchers move closer to finding potential soft spot in drug-resistant tuberculosis
August 15, 2018 - Real-time dynamic monitoring of cell’s nucleus for effective cancer screening
August 15, 2018 - Lower rates of Medicare preventive care visits found in racial, ethnic minority older adults
August 15, 2018 - Scientists identify stress hormone as key factor in failure of immune system to inhibit leukemia
August 15, 2018 - Cytoplan introduces three new nutritional supplements
August 15, 2018 - Effective hemorrhage control critical for survival after motorsport accidents
August 15, 2018 - Sygnature Discovery announces ambitious expansion plan with addition of Alderley Park facility
August 15, 2018 - Dietary carbohydrates could lead to osteoarthritis, new study finds
August 15, 2018 - Male tobacco smokers have decreased number of cannabinoid CB1 receptors, study reveals
August 15, 2018 - Scientists explore ways for drug therapies to reach deadly brain tumors
August 15, 2018 - Rethinking fundamental rule of stroke care: ‘Time is brain!’
August 15, 2018 - Scientists reveal role of ‘junk DNA’ in cancer dissemination
August 15, 2018 - Google’s DeepMind AI could soon be diagnosing eye conditions
August 15, 2018 - Scientists trick the brain to embody the prosthetic limb
August 15, 2018 - Researchers focus on uncoupling obesity from diabetes
August 15, 2018 - Clinical study shows how EarlySense system effectively detects opioid-induced respiratory depression
August 15, 2018 - A class of proteins shown to be effective in reducing drug-seeking behaviors
August 15, 2018 - FundamentalVR launches first-of-its-kind SaaS software platform for surgical simulation
August 15, 2018 - Gemphire Announces Termination of Phase 2a Clinical Trial of Gemcabene in Pediatric NAFLD
August 15, 2018 - Rheumatoid arthritis in pregnancy associated with low birth weight and premature birth
August 15, 2018 - Study may help increase effectiveness of antibiotics against drug-resistant bacteria
August 15, 2018 - Analyzing resident-to-resident incidents in dementia may hold the key to reducing future fatalities
August 15, 2018 - Robotic walking frame aims to help maintain mobility of older adults
August 15, 2018 - Simple intervention during routine care reduces alcohol consumption in men with HIV
August 15, 2018 - Genetics Home Reference: gout
August 15, 2018 - Scientists ID genesis of disease, focus efforts on shape-shifting tau
August 15, 2018 - OncoThira and NDSU enter into license agreement to develop, market cancer compounds
August 15, 2018 - Scientists unravel the mystery behind ovarian cancer with high-grade serous carcinoma
August 15, 2018 - Common signs that indicate vision problems in children
August 15, 2018 - Removing the cancer label – overhaul in cancer classification proposed
August 15, 2018 - Prams may expose babies and toddlers to more air pollution finds study
August 15, 2018 - Duke researchers track missing T-cells in glioblastoma patients
August 15, 2018 - Cardiac Profiles Up With Exercise, Less Sitting in Early Old Age
August 15, 2018 - Precision medicine offers a glimmer of hope for Alzheimer’s disease
August 15, 2018 - Immunovia’s new blood-based testing platform accurately detects non-small cell lung cancer
August 15, 2018 - New method provides a ‘big picture’ of genetic influences on traits and diseases
Genome surgery for eye disease moves closer to reality

Genome surgery for eye disease moves closer to reality

image_pdfDownload PDFimage_print

Researchers from Columbia University have developed a new technique for the powerful gene editing tool CRISPR to restore retinal function in mice afflicted by a degenerative retinal disease, retinitis pigmentosa. This is the first time researchers have successfully applied CRISPR technology to a type of inherited disease known as a dominant disorder. This same tool might work in hundreds of diseases, including Huntington’s disease, Marfan syndrome, and corneal dystrophies. Their study was published online today in Ophthalmology, the journal of the American Academy of Ophthalmology.

Stephen H. Tsang, M.D., Ph.D., and his colleagues sought to create a more agile CRISPR tool so it can treat more patients, regardless of their individual genetic profile. Dr. Tsang calls the technique genome surgery because it cuts out the bad gene and replaces it with a normal, functioning gene. Dr. Tsang said he expects human trials to begin in three years.

“Genome surgery is coming,” Dr. Tsang said. “Ophthalmology will be the first to see genome surgery before the rest of medicine.”

Retinitis pigmentosa is a group of rare inherited genetic disorders caused by one of more than 70 genes. It involves the breakdown and loss of cells in the retina, the light sensitive tissue that lines the back of the eye. It typically strikes in childhood and progresses slowly, affecting peripheral vision and the ability to see at night. Most will lose much of their sight by early adulthood and become legally blind by age 40. There is no cure. It is estimated to affect roughly 1 in 4,000 people worldwide.

Since it was introduced in 2012, the gene editing technology known as CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) has revolutionized the speed and scope with which scientists can modify the DNA of living cells. Scientists have used it on a wide range of applications, from engineering plants (seedless tomatoes) to producing animals (extra lean piglets). But as incredible as genome surgery is, CRISPR has some flaws to overcome before it can live up to its hype of curing disease in humans by simply cutting out bad genes and sewing in good ones.

Diseases like autosomal dominant retinitis pigmentosa present a special challenge to researchers. In autosomal dominant disorders, the person inherits only one copy of a mutated gene from their parents and one normal gene on a pair of autosomal chromosomes. So, the challenge for CRISPR-wielding scientists is to edit only the mutant copy without altering the healthy one.

In contrast, people with autosomal recessive disorders inherit two copies of the mutant gene. When two copies of the gene are mutated, treatment involves a more straightforward, one-step approach of simply replacing the defective gene. Currently, there are six pharmaceutical firms pursuing gene therapies for the recessive form of retinitis pigmentosa; none are developing a therapy for the dominant form. But that may change soon.

That’s because Dr. Tsang and colleagues have come up with a better strategy to treat autosomal dominant disease. It allowed them to cut out the old gene and replace it with a good gene, without affecting its normal function. This so called “ablate-and-replace” strategy can be used to develop CRISPR toolsets for all types of mutations that reside in the same gene and is not exclusive for a type of mutation. This is especially helpful when many types of mutations can lead to the same disorder. For example, any one of the 150 mutations in the rhodopsin gene can result in retinitis pigmentosa. Because Dr. Tsang’s technique can be applied in a mutation-independent manner, it represents a faster and less expensive strategy for overcoming the difficulty of treating dominant disorders with genome surgery.

Typically, CRISPR researchers design a short sequence of code called guide RNA that matches the bit they want to replace. They attach the guide RNA to a protein called Cas9, and together they roam the cell’s nucleus until they find a matching piece of DNA. Cas9 unzips the DNA and pushes in the guide RNA. It then snips out the bad code and coaxes the cell to accept the good code, using the cell’s natural gene repair machinery.

Instead of using one guide RNA, Dr. Tsang designed two guide RNAs to treat autosomal dominant retinitis pigmentosa caused by variations in the rhodopsin gene. Rhodopsin is an important therapeutic target because mutations in it cause about 30 percent of autosomal dominant retinitis pigmentosa and 15 percent of all inherited retinal dystrophies.

This technique allowed for a larger deletion of genetic code that permanently destroyed the targeted gene. Dr. Tsang found that using two guide RNAs instead of one increased the chance of disrupting the bad gene from 30 percent to 90 percent. They combined this genome surgery tool with a gene replacement technique using an adeno-associated virus to carry a healthy version of the gene into the retina.

Another advantage is that this technique can be used in non-dividing cells, which means that it could enable gene therapies that focus on nondividing adult cells, such as cells of the eye, brain, or heart. Up until now, CRISPR has been applied more efficiently in dividing cells than non-dividing cells.

Dr. Tsang used an objective vision test to evaluate the mice after treatment to show a significant improvement in retinal function. An electroretinogram is typically used to evaluate retinal health in humans. It tests the health of the retina much like an electrocardiogram (EKG) tests the health of the heart.

Previous CRISPR studies for retinal diseases have relied on a less objective measure that involves evaluating how often the mouse turns its head in the direction of a light source. Dr. Tsang used electroretinography to show that retinal degeneration slowed in treated eyes compared with untreated eyes.


Explore further:
CRISPR used to repair blindness-causing genetic defect in patient-derived stem cells

Journal reference:
Ophthalmology

Provided by:
American Academy of Ophthalmology

Tagged with:

About author

Related Articles