Breaking News
November 16, 2018 - Researchers find no link between ‘allergy friendly’ dogs and lower risk of asthma
November 16, 2018 - Researchers elucidate new rules of connectivity of neurons in the neocortex
November 16, 2018 - Treating children with ‘bubble baby disease’
November 16, 2018 - AHA: PTSD Common Among Those Who Suffer Tear in the Aorta’s Wall
November 16, 2018 - Many RA patients’ pain related to central nervous system
November 16, 2018 - Changes in Himalayan gut microbiomes linked to diet
November 16, 2018 - Inhibition of prostaglandin E2 enhances ability to combat infectious colitis
November 16, 2018 - Chronic dry eye can slow reading rate and disrupt day to day tasks
November 16, 2018 - Researchers develop new drug molecule that inhibits inflammation
November 16, 2018 - Dementia symptoms peak in winter and spring, study finds
November 16, 2018 - Stanford tobacco researcher weighs in on JUUL
November 16, 2018 - Increasing omega-3 fatty acid intake during pregnancy reduces risk of premature birth, review finds
November 16, 2018 - Researchers find no link between infants waking up at night and later developmental problems
November 16, 2018 - Both parents and children agree about confidential medical services
November 16, 2018 - FDA warns against use of unapproved pain medications with implanted pumps
November 16, 2018 - Precision medicine-based approach to slow or reverse biologic drivers of Alzheimer’s disease
November 16, 2018 - Study provides new insight into norovirus outbreaks, may help guide efforts to develop vaccines
November 16, 2018 - Inexpensive, portable air purifier could help protect the heart from pollution
November 16, 2018 - New 15-minute scan could help diagnose brain damage in babies up to two years old
November 16, 2018 - Deep brain stimulation not effective for treating early Alzheimer’s
November 16, 2018 - Traditional chemotherapy superior to new alternative for oropharyngeal cancers | News Center
November 16, 2018 - What This Pond Protist Does With Its Genome Will Astound You
November 15, 2018 - Researchers develop tool that speeds up analysis and publication of biomedical data
November 15, 2018 - Scientists identify mechanism used by lung cancer cells to obtain glucose
November 15, 2018 - Abnormalities in development of the brain could be involved in onset of autism, finds new study
November 15, 2018 - Soy protein equally effective as animal protein in building muscle strength
November 15, 2018 - American Academy of Pediatrics, Nov. 2-6
November 15, 2018 - Dopamine drives early addiction to heroin
November 15, 2018 - Variance in gut microbiome in Himalayan populations linked to dietary lifestyle | News Center
November 15, 2018 - Reducing Cardiovascular Disease: The Amish Way
November 15, 2018 - King’s researchers launch charter to guide organizations to engage abuse survivors in research
November 15, 2018 - Enable Injections enters into development agreements with UCB and Apellis Pharmaceuticals
November 15, 2018 - TGen North collaborates with NARBHA Institute to advance human health
November 15, 2018 - Researchers discover molecular basis for therapeutic actions of an African folk medicine
November 15, 2018 - Human Cell Atlas study of early pregnancy shows how mother’s immune system is modified
November 15, 2018 - New guidelines for detecting and managing sarcopenia to be launched in the UK
November 15, 2018 - Researchers explore role of dietary composition on energy expenditure
November 15, 2018 - Elsevier launches Entellect™ Platform, unlocking value by creating AI-ready life sciences data
November 15, 2018 - Now that cannabis is legal in Canada, let’s use it to tackle the opioid crisis
November 15, 2018 - In the Spotlight: At the intersection of tech, health, and ethics
November 15, 2018 - Traditional Glaucoma Test Can Miss Severity of the Disease
November 15, 2018 - Researchers directly connect activities of genes with instinctive behavior in male cichlids
November 15, 2018 - Salk researchers report new methods to identify AD drug candidates with anti-aging properties
November 15, 2018 - St. Jude Hospital announces availability of largest collections of leukemia samples
November 15, 2018 - Attenua Announces First Patient Treated in Phase 2 Clinical Trial in Chronic Cough with Bradanicline
November 15, 2018 - Designing a novel cell-permeable peptide chimera to promote wound healing
November 15, 2018 - NEI investigators combine two imaging modalities to view the retina in unprecedented detail
November 15, 2018 - Determining how hearts develop to better understand congenital heart defects
November 15, 2018 - Maverick immune cells can act independently to identify and kill cancer cells, finds research
November 15, 2018 - Advanced AI and big data methods to tackle dementia
November 15, 2018 - Report reveals increase in pancreatic cancer death rates across Europe
November 15, 2018 - Luxia Scientific announces availability of its gut microbiome test in Luxembourg
November 15, 2018 - New diabetes drugs linked to increased risk of lower-limb amputation and ketoacidosis
November 15, 2018 - New approach targets matrix surrounding neurons to protect neurons after stroke
November 15, 2018 - Lilly Submits New Drug Application to the FDA for Lasmiditan for Acute Treatment of Migraine
November 15, 2018 - Heart failure patients shouldn’t stop meds even if condition improves: study
November 15, 2018 - Parents and carers of people with diabetes experience emotional or mental health problems
November 15, 2018 - RetiPharma secures funding to develop new peptide drug for treating degenerative eye disorders
November 15, 2018 - Breakthrough research could lead to a new wave of cancer-fighting antibodies
November 15, 2018 - Mylan and Biocon launch new insulin glargine biosimilar in the UK
November 15, 2018 - For wildfire safety, only particular masks guard against toxic particulate matter
November 15, 2018 - New study of tribe shows influence of Western diet and lifestyle on blood pressure
November 15, 2018 - Scientists harness power of natural killer cells to treat children with neuroblastoma
November 15, 2018 - Investigating foodborne disease outbreak in Bosnia and Herzegovina based on simulation game
November 15, 2018 - Recommendations Issued for Management of Bradycardia
November 15, 2018 - Benefit unclear due to a lack of suitable studies
November 15, 2018 - TAMEST recognizes UT Southwestern’s Ralph DeBerardinis for changing our understanding of cancer
November 15, 2018 - Researchers discover key factors behind intestinal inflammation in CVID patients
November 15, 2018 - CityU develops first microarrayed 3D neuronal culture platform
November 15, 2018 - Expert suggests ways to control uncomfortable vaginal symptoms in diabetic women
November 15, 2018 - New edition of Red Journal focuses on roles of imaging in radiation oncology
November 15, 2018 - Doctors Aren’t Promoting Breastfeeding’s Cancer-Protection Benefit
November 15, 2018 - Collection of demonstration projects highlights value of patient engagement in research
November 15, 2018 - Technique to ‘listen’ to a patient’s brain during tumour surgery
November 15, 2018 - Seven-year-old returns to life as a “normal, healthy child” following bone marrow transplant
November 15, 2018 - AMSBIO expands range of high quality FFPE cancer cell line controls
November 15, 2018 - Marijuana use by kidney donors has no effect on transplant outcomes
November 15, 2018 - Exploring NMR Spectroscopy Applications through Interesting Infographics
November 15, 2018 - Chapman University wins additional $2.9 million NIH grant to study Alzheimer’s disease
November 15, 2018 - Microgel powder reduces infection and promotes healing
New study identifies inherited genetic variants that raise risk of clonal hematopoiesis

New study identifies inherited genetic variants that raise risk of clonal hematopoiesis

image_pdfDownload PDFimage_print

A new study led by researchers at Harvard Medical School and the Harvard T.H. Chan School of Public Health has identified some of the first known inherited genetic variants that significantly raise a person’s likelihood of developing clonal hematopoiesis, an age-related white blood cell condition linked with higher risk of certain blood cancers and cardiovascular disease.

The findings, published online July 11 in Nature, should help illuminate several questions about clonal hematopoiesis: how it arises, why it occurs in more than 10 percent of people over 65 and how the genome we inherit influences the mutations we acquire later in life.

The condition, uncovered in a series of studies over the past 10 years, is marked by the accumulation of genetically abnormal white blood cells, which may become cancerous or contribute to inflammation in atherosclerotic plaques, a potent risk factor for heart attacks and strokes.

“Clonal hematopoiesis is increasingly appreciated to be an important biomarker of risk for future illness, but we haven’t known what brings it about,” said the study’s co-senior author, Steven McCarroll, the Dorothy and Milton Flier Professor of Biomedical Science and Genetics at HMS and director of genetics at the Stanley Center for Psychiatric Research at the Broad Institute of MIT and Harvard.

“These findings reveal specific sequences of genetic events-;some inherited, others acquired-;that give rise to these abnormal blood cells,” he said.

The study also reaches the surprising conclusion that inherited genetic variants and acquired mutations are more connected than previously understood.

Acquired mutations are believed to occur randomly over time, appearing spontaneously or after exposure to damaging agents such as ultraviolet light.

However, the team found examples where inherited variants led to the appearance of specific acquired mutations later in life or gave cells with such mutations a growth advantage over other cells.

“Conceptually one of the most intriguing things to come out of this work is the blurring of that distinction between genetic inheritance and acquired mutations,” said McCarroll. “Inherited alleles turn out to have powerful influences on what was previously thought to be a more capricious process.”

Out of proportion

Normally, each of the body’s 10,000 to 20,000 hematopoietic, or blood-forming, stem cells contributes roughly the same number of mature blood cells to the body’s total. The result: a pool of hundreds of billions of blood cells with many different parents.

Clonal hematopoiesis occurs when a single stem cell acquires mutations that cause it to produce far more than its share of new cells, including white blood cells. Over many years, the mutants out-compete normal blood cells, either proliferating more rapidly or surviving longer. Instead of the typical 1/10,000th, or 0.0001 percent, of a person’s total white cell count, the progeny of a single mutated stem cell might make up 2 percent, or 20 percent, or more than 90 percent of a person’s white blood cells. These genetically dominant blood cells are called clones.

Previous research from McCarroll’s lab and others showed that only some clones cause trouble. For example, only about 10 percent of people with clonal hematopoiesis go on to develop blood cancer. Even so, that risk is 10 times higher than that in the general U.S. population.

The team set out to learn which parts of the genome tend to be mutated in clones, which mutations are most harmful, and how clones arise and expand their numbers.

To do so, co-first authors Po-Ru Loh, assistant professor of medicine at HMS and Brigham and Women’s Hospital, and Giulio Genovese, senior computational biologist in the McCarroll lab, developed a mathematical approach that let them identify clones early on, when they accounted for as little as 1 percent of a person’s white blood cells. Previous methods lacked the precision to detect clones unless they had expanded to at least 15 to 20 percent of white blood cells.

Armed with their new technique, Loh and Genovese analyzed DNA from the blood of 151,000 people who’d donated samples to the UK Biobank.

Not so random after all

The increased level of sensitivity allowed the team to find clones in more than 8,000 participants, many of whom had acquired similar mutations. To the researchers’ surprise, participants with similar acquired mutations often shared a rare, inherited variant nearby. Further investigation confirmed that this was far from a coincidence; the inherited variants had powerful effects on whether people acquired those other mutations later in life.

“When Giulio suggested searching for influences of inherited genetic variants, I never expected to turn up anything interesting,” said Loh. “When I first saw the results, the associations were so strong I wondered if they were a bug in the code.”

The researchers were then able to figure out the specific ways that the inherited variants made people vulnerable to developing clones.

The inherited variants and acquired mutations typically appeared in the same part of the genome. Some inherited variants made certain spots on chromosomes more vulnerable to future mutation. Others created easy ways for future mutations to increase the rate at which cells proliferate. In some cases, an inherited variant inactivated one copy of a gene that normally protects against cancer. Later on, an acquired mutation inactivated the other copy.

“These are examples of what cancer geneticists call the two-hit model, where the inherited allele is the first hit and then the subsequent acquired mutation is the second hit,” said McCarroll. “It’s still not cancer, but having many, many white blood cells with that combination of mutations almost certainly puts one in a more vulnerable place.”

Another inherited variant inactivated one copy of a gene that promotes cell growth. This flummoxed the researchers at first, since the variant appeared to protect against aggressive cell growth or cancer. But many of the people who inherited this variant later acquired a mutation that replaced the inactivated gene with the full-strength copy inherited from the other parent. Cells with the acquired mutation then out-competed other cells.

The variants the team uncovered are rare and inheriting one doesn’t guarantee that a person will develop clonal hematopoiesis. However, certain variants did make acquiring clones with a specific mutation much more likely-;conferring up to a 50 percent chance, compared to the normal risk of well under 1 percent.

The researchers even found instances where multiple family members who inherited the same variant went on to develop clones with the same mutation.

The authors believe their findings are likely not a fluke.

“I think it’s safe to predict that these are early examples of a phenomenon we’ll see again and again,” said McCarroll.

The demographics of clones

Some acquired mutations were more common in women, others in men. Although clones in general are much more common in older people, two acquired mutations appeared across all ages, suggesting they arise from developmental rather than age-related processes.

The discoveries invite further efforts to understand the nature and consequences of each mutation.

“Although it’s been possible to say that, on average, clones might increase the risk of blood cancer tenfold, that doesn’t mean every specific clone does,” said McCarroll. “A key direction is to go from talking generically about clones to knowing each clone’s history and risk profile based on its specific mutations and frequency in the blood.”

As information builds, researchers will be able to better assess the risk of each clone and try to develop environmental or medical interventions might slow the growth of clones and avert disease, McCarroll said.

Tagged with:

About author

Related Articles