Breaking News
September 21, 2018 - 30 Million Americans Now Have Diabetes
September 21, 2018 - Thousands of breast cancer gene variants engineered and analyzed
September 21, 2018 - The current fellowship interview process is cumbersome — Stanford researchers have a better idea
September 21, 2018 - Progenitor cells for human bone and cartilage have been identified
September 21, 2018 - Study reveals new therapeutic target for pediatric tumor-associated intractable epilepsy
September 21, 2018 - SLU’s College professor receives NIH grant to develop I-TEST project
September 21, 2018 - DermTech completes enrollment in clinical study to assess DNA damage and reversal
September 21, 2018 - Grieving patients treated with talk therapy have lower risk of suicide and psychiatric illness
September 21, 2018 - NIH and FDA call for eliminating involvement of RAC in human gene therapy experiments
September 21, 2018 - New system uses algorithm to convert 2D videos into 3D printed ‘motion sculptures’
September 21, 2018 - Sea squirt model reveals key molecules in dopaminergic neuron differentiation
September 21, 2018 - Effective management of neonatal abstinence syndrome requires coordinated ‘cascade of care’
September 21, 2018 - Refugees seek care for wounds of war
September 21, 2018 - Under the sea, in an octopus’ garden on ecstacy
September 21, 2018 - Eating foods with low nutritional quality ratings linked to cancer risk in large European cohort
September 21, 2018 - Giving kids honest information about water consumption may help them make healthy choices
September 21, 2018 - Horwitz Prize Awarded for Work on Hormones
September 21, 2018 - CHMP issues positive opinion supporting use of Trelegy Ellipta in broader group of COPD patients
September 21, 2018 - Scientists discover new molecules that work together to remove unwanted DNA
September 21, 2018 - Dr. Fenella France to deliver 2019 Plenary Lecture
September 21, 2018 - New research finds that MHC-II molecules have more influence on tumors than MHC-I
September 21, 2018 - Researchers study effects of cardiac cycle in simple learning task
September 21, 2018 - FDA takes new steps to address opioid crisis by approving Opioid Analgesic Risk Evaluation and Mitigation Strategy
September 21, 2018 - Positive Barhemsys Phase 3 Treatment Data Published in Anesthesia & Analgesia
September 21, 2018 - Celiac Disease Screening: MedlinePlus Lab Test Information
September 21, 2018 - Autism linked to egg cells’ difficulty creating large proteins
September 21, 2018 - Tweaking nuclear pores could provide new avenue to battle against cancer
September 21, 2018 - Experts warn health care providers to slow down in allowing smart pill in patient care settings
September 21, 2018 - MoreGrasp reports breakthrough development of grasp neuroprosthetics activated by thought control
September 21, 2018 - Study reveals new way to target HER2-negative metastatic breast cancer
September 21, 2018 - CHMP grants positive opinion for VENCLYXTO plus rituximab for treating relapsed/refractory CLL
September 21, 2018 - Study offers solid link between visceral organs and brain’s reward, motivation system
September 21, 2018 - First U.S. patient treated with innovative gene therapy at Bascom Palmer Eye Institute
September 21, 2018 - Choroidal Detachment – The American Society of Retina Specialists
September 21, 2018 - New clinical trial evaluates aesthetic results of conservative surgery in breast cancer
September 21, 2018 - Discovery of a key protein involved in the development of autism
September 21, 2018 - Air pollution appears to be linked to increased risk of developing dementia
September 21, 2018 - Henry Ford Health System receives $600k grant to study genetic makeup of gliomas
September 21, 2018 - Arthritis common in individuals with varying degrees of depression, finds study
September 21, 2018 - Scientist intends to fight pathogenic bacteria with viruses
September 21, 2018 - New research suggests link between PFAS chemicals and hyperthyroidism in pet cats
September 21, 2018 - Multi-year study data shows impact of new soft contact lens to slow myopia progression in children
September 21, 2018 - Neuroscientists identify circuit for brain’s statistical inference about motion
September 21, 2018 - MILabs’ VECTor6 system wins Commercial Innovation Award at WMIC 2018
September 21, 2018 - Scientists find wild African monkeys infected with bacterium that causes syphilis, yaws in humans
September 21, 2018 - 2006 to 2015 Saw Increase in Severe Maternal Morbidity
September 21, 2018 - Similar changes in the brains of patients with ADHD and emotional instability
September 21, 2018 - Cobalt mining in DR Congo takes a high toll on both creuseurs and environment
September 21, 2018 - Eating fatty fish during pregnancy may boost unborn child’s brain development
September 21, 2018 - Study reveals promising new drug candidate to treat acute renal failure
September 21, 2018 - Neural signal that urges to eat overpowers the one that says to stop
September 21, 2018 - Scientists achieve breakthrough in accelerated diagnosis of multi-resistant hospital pathogens
September 21, 2018 - Researchers simulate how different breast tissues respond to heat from MRIs
September 21, 2018 - Despite red flags at surgery centers, overseers award gold seals
September 21, 2018 - Zapping Airway Nerves May Help COPD Patients Breathe
September 21, 2018 - Researchers find answers as to why some people are at risk of gout
September 21, 2018 - Stars of Stanford Medicine: Genetic counseling and compassion
September 21, 2018 - Researchers use reinforcement learning to train gliders to soar like birds
September 21, 2018 - New federally-funded research project could lead to treatments that extend human lifespan
September 21, 2018 - Health insurance ads have shifted over time due to health plans offered via ACA
September 21, 2018 - Use of transcranial electrical stimulation to bolster creativity has far-reaching implications
September 21, 2018 - Scientists find way to boost efficacy of powerful antimalarial drug with anti-cancer medicines
September 21, 2018 - Weighing the risks and benefits of drug tapering—two patients, two perspectives
September 21, 2018 - The “exposome” revealed: a barrage of bacteria, chemicals, microscopic animals and more
September 21, 2018 - Top three immune boosting recommendations to ward off freshers’ flu
September 21, 2018 - Young children’s oral microbiota could serve as early indicator for obesity
September 21, 2018 - Older individuals with multiple sclerosis report higher quality of life than younger counterparts
September 21, 2018 - LineaRx signs agreement with Takis/Evvivax to develop linear-DNA based anti-cancer vaccines
September 21, 2018 - AbbVie Presents Upadacitinib Longer-Term (32-Week) and Patient-Reported Outcomes Data from Phase 2b Atopic Dermatitis Study at 27th European Academy of Dermatology and Venereology (EADV) Congress
September 21, 2018 - Alzheimer’s drug may stop disease if used before symptoms develop
September 21, 2018 - Human skeletal stem cell can generate cartilage, bone
September 21, 2018 - UK and European research collaborations receive vote of confidence by three major cancer charities
September 21, 2018 - Microbiota in the intestines and cell stress cause colon cancer
September 20, 2018 - Arizona EMTs have 39% higher risk for suicide than general public
September 20, 2018 - Driving and older adults: MedlinePlus Medical Encyclopedia
September 20, 2018 - Brain region for stress control is enlarged in people with depression, finds study
September 20, 2018 - Researchers test autobiographical memory for early Alzheimer’s detection
September 20, 2018 - Organizations join forces to help teens with severe mental health challenges | News Center
September 20, 2018 - Neurons in the human brain can encode numerical information
September 20, 2018 - Potential drugs to treat neurodegenerative diseases garner $3 million grant
Scientists deliver nano-size packets of genetic code to treat brain tumors in mice

Scientists deliver nano-size packets of genetic code to treat brain tumors in mice

image_pdfDownload PDFimage_print

In a “proof of concept” study, scientists at Johns Hopkins Medicine say they have successfully delivered nano-size packets of genetic code called microRNAs to treat human brain tumors implanted in mice. The contents of the super-small containers were designed to target cancer stem cells, a kind of cellular “seed” that produces countless progeny and is a relentless barrier to ridding the brain of malignant cells.

Results of their experiments were published online June 21 in Nano Letters.

“Brain cancer is one of the most widely understood cancers in terms of its genetic makeup, but we have yet to develop a good treatment for it,” says John Laterra, M.D., Ph.D., professor of neurology, oncology and neuroscience at the Johns Hopkins University School of Medicine and a research scientist at the Kennedy Krieger Institute. “The resilience of cancer stem cells and the blood-brain barrier are major hurdles.”

Blood that enters the brain is filtered through a series of vessels that act as a protective barrier. But this blood-brain barrier blocks molecular medicines that have the potential to revolutionize brain cancer therapy by targeting cancer stem cells, says Laterra.

“To modernize brain tumor treatments, we need tools and methods that bypass the blood-brain barrier,” says Jordan Green, Ph.D., professor of biomedical engineering, ophthalmology, oncology, neurosurgery, materials science and engineering and chemical and biomolecular engineering at the Johns Hopkins University School of Medicine. “We need technology to safely and effectively deliver sensitive genetic medicines directly to tumors without damaging normal tissue.”

A case in point, Green says, is glioblastoma, the form of brain cancer that Arizona Sen. John McCain is battling, which often requires repeated surgeries. Doctors remove the brain tumor tissue that they can see, but the malignancy often returns quickly, says Laterra. Most patients with glioblastoma live less than two years after diagnosis.

Scientists have long suspected that cancer stem cells are at the root of what drives the return and spread of glioblastoma and other cancers. These stem cells give rise to other cancer cells and, if they evade the surgeon’s knife, can lead to an entirely new tumor.

Laterra and Green, who are members of the Johns Hopkins Kimmel Cancer Center, designed a way to efficiently deliver super-tiny packets of microRNAs into established brain tumors. The microRNAs target brain cancer stem cells to halt their capacity to propagate and sustain tumor growth.

The packets are made of biodegradable plastic similar to material used for surgical sutures and that degrades over time. They are 1,000 times smaller than the width of a human hair and typical of the size and shape of natural components that cells use to communicate. When cancer cells engulf the packets, they break apart and release their microRNA “payload” specifically where the microRNAs need to take action within the cancer cells.

Encased in the nanopacket are microRNAs that specifically bind to messenger RNAs linked to two genes: HMGA1 and DNMT, which function together to regulate gene expression programs in cells.

When microRNAs bind to these messenger RNAs, they block their protein-making abilities and turn off programs that drive the cancer cells’ stemlike characteristics. Without their stemlike properties, the cancer cells are more differentiated, they lose their capacity to propagate tumors, and they may be more susceptible to radiation and drugs.

For their experiments, the Johns Hopkins scientists implanted human glioblastoma cells into 18 mice. To mimic the clinical challenge of treating an existing tumor, the scientists waited 45 days before treating the animals to be sure they had well-formed tumors. Half of the animals received infusions of the nanopackets containing active microRNAs directly into their brain tumors, and the other half received nanopackets containing inactive microRNAs. To isolate the effect of the nanoparticles, the scientists used mice that were bred without immune system T-cells that target cancer cells.

Five of the nine mice receiving inactive microRNAs (controls) died within two months, and the rest of the control mice died within 90 days. Three of the nine mice receiving active microRNAs lasted up to 80 days, and six lived to 133 days. Those six were humanely euthanized, and isolated mouse brains were examined for the presence of tumors.

All of the control mice had large tumors in their brains when they died. Four of the mice that received active microRNAs and lived to 133 days had no tumors, and two had small ones.

Green says that many genetic medicines are designed to target one gene. The type of nanoparticles the Johns Hopkins team used in this study can encapsulate multiple types of microRNAs to target multiple gene networks.

When the brain cancer stem cells internalize the nanoparticle and transition to a non-stem-cell state, Laterra says, clinicians could exploit that condition, and give radiation or other drugs to kill the now-vulnerable cells.

Green says scientific teams elsewhere are developing microRNA packets using lipid-based materials, and some standard chemotherapy is delivered in a fatty nanoparticle called a liposome.

Green and Laterra say the nanoparticles in their study are able to permeate the entire tumor because rodent brains are small. Humans, with bigger brains, may need a pump and catheter to funnel nanoparticles throughout the brain.

The Johns Hopkins team is working to scale up development of its nanoparticles and standardize their stability and quality before applying for permission to begin clinical trials on people.

The research team has filed for a patent for part of the technology used in this research.

Source:

https://www.hopkinsmedicine.org/news/media/releases/scientists_create_nano_size_packets_of_genetic_code_aimed_at_brain_cancer_seed_cells?preview=true

Tagged with:

About author

Related Articles