Breaking News
February 23, 2019 - Surprise rheumatoid arthritis discovery points to new treatment for joint inflammation
February 23, 2019 - A just-right fix for a tiny heart
February 23, 2019 - Owlstone Medical and Shanghai Renji Hospital collaborate to initiate breath biopsy lung cancer trial
February 23, 2019 - AMSBIO’s comprehensive portfolio of knock-out cell lines and lysates
February 23, 2019 - New app reliably determines physicians’ skills in forming accurate, efficient diagnoses
February 23, 2019 - Peripheral nerve injury can trigger the onset and spread of ALS, shows study
February 23, 2019 - Researchers uncover mechanisms that prevent tooth replacement in mice
February 23, 2019 - Once-a-day capsule offers new way to reduce symptoms of chronic breathlessness
February 23, 2019 - FDA Adds Boxed Warning for Increased Risk of Death with Gout Medicine Uloric (febuxostat)
February 23, 2019 - Phone-based intervention aids rheumatoid arthritis care
February 23, 2019 - Opioid epidemic makes eastern inroads and targets African-Americans
February 23, 2019 - New identified biomarker predicts patients who might benefit from HER2-targeted agents
February 23, 2019 - Study offers new insights into mechanisms of changes in erythrocytes under stress
February 23, 2019 - Antipsychotic polypharmacy may be beneficial for schizophrenia patients
February 23, 2019 - Researchers investigate how marijuana and tobacco co-use affects quit attempts by smokers
February 23, 2019 - Patients with diabetes mellitus have high risk of stable ischemic heart disease
February 23, 2019 - Transparency on healthcare prices played key role in Arizona health system’s turnaround
February 23, 2019 - A comprehensive, multinational review of peppers around the world
February 23, 2019 - Study finds modest decrease in burnout among physicians
February 23, 2019 - A simple change can drastically reduce unnecessary tests for urinary tract infections
February 23, 2019 - Deep Learning-Enhanced Device Detects Diabetic Retinopathy
February 23, 2019 - Researchers discover new binding partner for amyloid precursor protein
February 23, 2019 - Modest decrease seen in burnout among physicians, researchers say | News Center
February 23, 2019 - Transplanting bone marrow of young mice into old mice prevents cognitive decline
February 23, 2019 - Mogrify to accelerate novel IP and cell therapies using $3.7m USD funding
February 23, 2019 - Johns Hopkins study describes cells that may help speed bone repair
February 23, 2019 - Scientists demonstrate influence of food odors on proteostasis
February 23, 2019 - Researchers unlock the secret behind reproduction of fish called ‘Mary’
February 23, 2019 - Acupuncture Could Help Ease Menopausal Symptoms
February 23, 2019 - Researchers use AI to detect early signs of Alzheimer’s
February 23, 2019 - On recovery, vulnerability and ritual: An exhibit in white | News Center
February 23, 2019 - Memory Stored in Unexpected Region of the Brain
February 23, 2019 - Several health experts worldwide gather at EUDONORGAN event
February 23, 2019 - Discovery of potent compound in native California shrub may lead to treatment for Alzheimer’s
February 22, 2019 - Researchers create new map of the brain’s own immune system
February 22, 2019 - ICHE’s reviews on surgical infections, unnecessary urine tests, and nurses’ role in antibiotic stewardship
February 22, 2019 - UK Research and Innovation invests £200 million to create new generation of AI leaders
February 22, 2019 - Takeda collaboration to boost fight against Alzheimer’s and other neurodegenerative diseases
February 22, 2019 - Heavy drinking may change DNA, leading to increased craving for alcohol
February 22, 2019 - U.S. opioid deaths jump fourfold in 20 years; epidemic shifts to Eastern states | News Center
February 22, 2019 - 5 Questions with William Turner on Diversity in Medicine
February 22, 2019 - HHS Finalizes Rule Seeking To Expel Planned Parenthood From Family Planning Program
February 22, 2019 - Researchers uncover biochemical pathway that may help identify drugs to treat Alzheimer’s
February 22, 2019 - Biologist uses new grant to find ways to eliminate schistosomiasis
February 22, 2019 - Bag-mask ventilation to help patients breathe during intubation prevents complications
February 22, 2019 - AbbVie Announces New Drug Application Accepted for Priority Review by FDA for Upadacitinib for Treatment of Moderate to Severe Rheumatoid Arthritis
February 22, 2019 - Nature versus nurture and addiction
February 22, 2019 - New website connects researchers with data experts, resources | News Center
February 22, 2019 - Today’s Concerns About Drug Prices Echo The Past
February 22, 2019 - CT and Doppler equipment have low accuracy in detecting cerebral vasospasm and ischemia
February 22, 2019 - Study finds out similarity in function between healthy retina cell and tumor cell
February 22, 2019 - CWRU awarded NIH grant to identify effective treatments for intimate partner violence
February 22, 2019 - Oncotype DX Not Cost-Effective for Low-Risk Breast Cancer
February 22, 2019 - Scientists discover new type of immune cells that are essential for forming heart valves
February 22, 2019 - Talk About Déjà Vu: Senators Set To Re-Enact Drug Price Hearing Of 60 Years Ago
February 22, 2019 - Genetic defect linked to pediatric liver disease identified
February 22, 2019 - New cellular atlas could provide a deeper insight into blinding diseases
February 22, 2019 - Growing number of cancer survivors, fewer providers point to challenge in meeting care needs
February 22, 2019 - Innovative compound offers a new therapeutic approach to treat multiple sclerosis
February 22, 2019 - $1.5 million grant to develop opioid treatment program for jail detainees
February 22, 2019 - FDA’s new proposed rule would update regulatory requirements for sunscreen products in the U.S
February 22, 2019 - Most Hip, Knee Replacements Last Decades, Study Finds
February 22, 2019 - Wellness problems prevalent among ob-gyn residents
February 22, 2019 - In the Spotlight: “The world is your oyster in geriatrics”
February 22, 2019 - Successful testing of multi-organ “human-on-a-chip” could replace animals as test subjects
February 22, 2019 - Analysis of cervical precancer shows decline in two strains of HPV
February 22, 2019 - Sugary stent eases suturing of blood vessels
February 22, 2019 - From surgery to psychiatry: A medical student reevaluates his motivations
February 22, 2019 - Is New App From Feds Your Answer To Navigating Medicare Coverage? Yes And No
February 22, 2019 - New pacemakers powered by heartbeats could reduce need for surgery
February 22, 2019 - The United States records highest drug overdose death rates
February 22, 2019 - Heart attacks more likely to be fatal in women and rates are rising
February 22, 2019 - Morning walks could be better than drugs at lowering blood pressure
February 22, 2019 - Phase 1 data reinforce safety profile of new drug for treating Duchenne muscular dystrophy
February 22, 2019 - Vitamin D supplementation less effective in the presence of obesity, shows study
February 22, 2019 - Novostia raises CHF 6.5 million to advance its aortic, mitral heart valve to clinical trials
February 22, 2019 - CPRIT awards nearly $20 million to The University of Texas MD Anderson Cancer Center
February 22, 2019 - Sarepta Announces FDA Acceptance of Golodirsen (SRP-4053) New Drug Application for Patients with Duchenne Muscular Dystrophy Amenable to Skipping Exon 53
February 22, 2019 - An institutional effort to reduce the amount of opioids prescribed following lumbar surgery
February 22, 2019 - Family-history-based models perform better than non-family-history based models
Scientists deliver nano-size packets of genetic code to treat brain tumors in mice

Scientists deliver nano-size packets of genetic code to treat brain tumors in mice

image_pdfDownload PDFimage_print

In a “proof of concept” study, scientists at Johns Hopkins Medicine say they have successfully delivered nano-size packets of genetic code called microRNAs to treat human brain tumors implanted in mice. The contents of the super-small containers were designed to target cancer stem cells, a kind of cellular “seed” that produces countless progeny and is a relentless barrier to ridding the brain of malignant cells.

Results of their experiments were published online June 21 in Nano Letters.

“Brain cancer is one of the most widely understood cancers in terms of its genetic makeup, but we have yet to develop a good treatment for it,” says John Laterra, M.D., Ph.D., professor of neurology, oncology and neuroscience at the Johns Hopkins University School of Medicine and a research scientist at the Kennedy Krieger Institute. “The resilience of cancer stem cells and the blood-brain barrier are major hurdles.”

Blood that enters the brain is filtered through a series of vessels that act as a protective barrier. But this blood-brain barrier blocks molecular medicines that have the potential to revolutionize brain cancer therapy by targeting cancer stem cells, says Laterra.

“To modernize brain tumor treatments, we need tools and methods that bypass the blood-brain barrier,” says Jordan Green, Ph.D., professor of biomedical engineering, ophthalmology, oncology, neurosurgery, materials science and engineering and chemical and biomolecular engineering at the Johns Hopkins University School of Medicine. “We need technology to safely and effectively deliver sensitive genetic medicines directly to tumors without damaging normal tissue.”

A case in point, Green says, is glioblastoma, the form of brain cancer that Arizona Sen. John McCain is battling, which often requires repeated surgeries. Doctors remove the brain tumor tissue that they can see, but the malignancy often returns quickly, says Laterra. Most patients with glioblastoma live less than two years after diagnosis.

Scientists have long suspected that cancer stem cells are at the root of what drives the return and spread of glioblastoma and other cancers. These stem cells give rise to other cancer cells and, if they evade the surgeon’s knife, can lead to an entirely new tumor.

Laterra and Green, who are members of the Johns Hopkins Kimmel Cancer Center, designed a way to efficiently deliver super-tiny packets of microRNAs into established brain tumors. The microRNAs target brain cancer stem cells to halt their capacity to propagate and sustain tumor growth.

The packets are made of biodegradable plastic similar to material used for surgical sutures and that degrades over time. They are 1,000 times smaller than the width of a human hair and typical of the size and shape of natural components that cells use to communicate. When cancer cells engulf the packets, they break apart and release their microRNA “payload” specifically where the microRNAs need to take action within the cancer cells.

Encased in the nanopacket are microRNAs that specifically bind to messenger RNAs linked to two genes: HMGA1 and DNMT, which function together to regulate gene expression programs in cells.

When microRNAs bind to these messenger RNAs, they block their protein-making abilities and turn off programs that drive the cancer cells’ stemlike characteristics. Without their stemlike properties, the cancer cells are more differentiated, they lose their capacity to propagate tumors, and they may be more susceptible to radiation and drugs.

For their experiments, the Johns Hopkins scientists implanted human glioblastoma cells into 18 mice. To mimic the clinical challenge of treating an existing tumor, the scientists waited 45 days before treating the animals to be sure they had well-formed tumors. Half of the animals received infusions of the nanopackets containing active microRNAs directly into their brain tumors, and the other half received nanopackets containing inactive microRNAs. To isolate the effect of the nanoparticles, the scientists used mice that were bred without immune system T-cells that target cancer cells.

Five of the nine mice receiving inactive microRNAs (controls) died within two months, and the rest of the control mice died within 90 days. Three of the nine mice receiving active microRNAs lasted up to 80 days, and six lived to 133 days. Those six were humanely euthanized, and isolated mouse brains were examined for the presence of tumors.

All of the control mice had large tumors in their brains when they died. Four of the mice that received active microRNAs and lived to 133 days had no tumors, and two had small ones.

Green says that many genetic medicines are designed to target one gene. The type of nanoparticles the Johns Hopkins team used in this study can encapsulate multiple types of microRNAs to target multiple gene networks.

When the brain cancer stem cells internalize the nanoparticle and transition to a non-stem-cell state, Laterra says, clinicians could exploit that condition, and give radiation or other drugs to kill the now-vulnerable cells.

Green says scientific teams elsewhere are developing microRNA packets using lipid-based materials, and some standard chemotherapy is delivered in a fatty nanoparticle called a liposome.

Green and Laterra say the nanoparticles in their study are able to permeate the entire tumor because rodent brains are small. Humans, with bigger brains, may need a pump and catheter to funnel nanoparticles throughout the brain.

The Johns Hopkins team is working to scale up development of its nanoparticles and standardize their stability and quality before applying for permission to begin clinical trials on people.

The research team has filed for a patent for part of the technology used in this research.

Source:

https://www.hopkinsmedicine.org/news/media/releases/scientists_create_nano_size_packets_of_genetic_code_aimed_at_brain_cancer_seed_cells?preview=true

Tagged with:

About author

Related Articles