Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Researchers to investigate role of hormones in mosquito’s ability to use human blood for egg production

Researchers to investigate role of hormones in mosquito’s ability to use human blood for egg production

Entomologists at the University of California, Riverside have received a five-year grant of $2.44 million from the National Institute of Allergy and Infectious Diseases, or NIAID, to investigate the role hormones play in the female mosquito’s ability to use human blood for egg production.

Vector mosquitoes need vertebrate blood to develop each batch of their eggs. As a result, reproduction in female mosquitoes is closely linked to blood feeding. The NIAID funding — a competitive National Institutes of Health grant renewal — will allow the entomologists to introduce novel research tools for genetic manipulation, such as CRISPR, in their exploration of the genetic basis for the hormonal control of mosquito reproduction.

“A clear understanding of the molecular mechanisms regulating egg development in mosquitoes can play a critical role in our coming up with innovative and novel vector control methods,” said Alexander Raikhel, a distinguished professor of entomology who will lead the project along with Sourav Roy, an assistant professional researcher who received his doctorate at UCR and joined the Raikhel lab in 2011.

The research project, titled “Molecular Basis of Ecdysteroid Action in the Mosquito,” is expected to help Raikhel, Roy, and others in Raikhel’s lab identify targets that can block the reproduction of female mosquitoes, thereby resulting in significant declines in mosquito populations and the dangerous diseases they transmit.

Mosquitoes pose an enormous threat to humans on a global scale, killing about a million people each year. The two notable vectors of the most devastating mosquito-borne diseases to humans are Aedes aegypti — the principal vector for dengue, yellow fever, chikungunya virus, and, recently, Zika virus — and Anopheles gambiae, the vector for malaria.

The menace of mosquito-borne diseases has increased over the years due to fast-growing insecticide resistance, social complexities, climate change, and the lack of effective vaccines. Mosquitoes are largely present in countries with extreme poverty and, hence, cause severe morbidity and economic loss that impede further development.

“Alleviating these diseases is not only critical for protecting human life, but also for improving social progress in vulnerable communities,” said Raikhel, the UC Presidential Chair and the Mir Mulla Endowed Chair in the Department of Entomology. “Recent expansion of Aedes mosquitoes northward from Central America has become a looming threat generating a major public health concern.”

In 2016, a $1.1 billion spending effort to reduce the effects and spread of Zika was put forth after outbreaks in both Florida and Texas. The Centers for Disease Control and Prevention predicted migration of both disease vectors — the yellow-fever mosquito Aedes aegypti and the tiger mosquito Aedes albopictus — into many parts of the United States by 2017, and gave high priority to the development of vector control methods.

Roy, a broadly trained computational biologist and an expert on mosquito genomics who has worked on research related to gene regulation for more than 10 years, noted that a complete collapse of the mosquito population would be an ideal but largely unachievable outcome of the research.

“Rapidly proliferated organisms such as mosquitoes are fast-evolving and develop resistance to many control approaches,” he said. “A good example is resistance to pesticides, the development of which has devastated mosquito control and resulted in a mosquito population explosion. It is an unrealistic goal to see the complete end of vector mosquitoes. A significant decline in their population, however, is realistic . Combined with novel insecticides for mosquitoes and vaccines and anti-pathogen drugs, such approaches could significantly reduce mosquito populations and incidence of diseases they transmit.”

Raikhel explained that mosquitoes serve as vectors for harmful human diseases because disease pathogens use female mosquitoes for the obligatory stages of their life cycles. Each egg development cycle produces 100-150 eggs and transpires 3-4 times during a female’s lifespan.

“Therefore, specifically targeting mosquito reproduction can have a significant impact on reducing the current and future populations,” he said. “Since Aedes aegypti can transmit multiple viral diseases that circulate in the same geographical region, removing the vector entirely from the field can serve as an effective method to limit the spread of all viral diseases.”

In Aedes aegypti females, two major insect hormones — the juvenile hormone and the steroid hormone ecdysone — control reproduction and egg development. Female mosquitoes are unique in that they undergo a three-day maturation period after they emerge from pupae. Juvenile hormone, which occurs only in insects, regulates this stage. In particular, it does so by regulating genes that are essential for subsequent reproduction steps.

“As a result, female mosquitoes become ready for seeking hosts, blood feeding, and subsequent egg development,” Roy said. “They also develop into a disease transmitting vector. Thus, this feature of mosquito reproduction presents an exceptional opportunity for manipulating mosquito egg development with the goal of interrupting reproduction.”

After female mosquitoes take a blood meal, it is ecdysone that controls egg development. During this post-blood feeding stage, genes responsible for mosquito egg development undergo their sequential activation and shut down.

“We have identified several factors and hormones involved in these functions, such as insulin and ecdysone,” Raikhel said. “We discovered that ecdysone not only activates some genes but also shuts down others in the course of the reproductive cycle. In our previous studies, we worked out the mechanism by which ecdysone activates mosquito genes. But how ecdysone represses genes has not been observed in any insect, including mosquitoes.”

In the present grant cycle, the Raikhel lab intends to clarify this repressive action of ecdysone.

“It is possible that in understanding how important genes can be shut down naturally, we would get a clue to how this process can be manipulated to block egg development,” said Raikhel, a member of the National Academy of Sciences.

About author

Related Articles