Breaking News
December 18, 2018 - Researchers identify link between mucus in the small airways and pulmonary fibrosis
December 18, 2018 - EU Commission’s Health Policy Platform to host EKHA program on transplantation
December 18, 2018 - Survivors of childhood Hodgkin lymphoma have high risk of developing solid tumors
December 18, 2018 - Small changes to cafeteria design can get kids to eat healthier, new assessment tool finds
December 18, 2018 - From Machines to Cyclic Compounds
December 18, 2018 - New study reveals best assessment tools to establish delirium severity
December 18, 2018 - Rice University scientists develop synthetic protein switches to control electron flow
December 18, 2018 - Home-based pulmonary function monitoring for teens with Duchenne muscular dystrophy
December 18, 2018 - National Biofilms Innovation Centre award grant to Neem Biotech for novel anti-biofilm drug development
December 18, 2018 - Artificial intelligence and the future of medicine
December 18, 2018 - Montana State doctoral student receives grant for her work to improve neuroscience tool
December 18, 2018 - Early postpartum initiation of opioids associated with persistent use
December 18, 2018 - Russian scientists identify molecular ‘switch’ that could be target for treatment of allergic asthma
December 18, 2018 - Surgeons make more mistakes in the operating room during stressful moments, shows study
December 18, 2018 - Immune cells explode themselves to inform about the danger of invading bacteria
December 18, 2018 - Malnutrition in children with Crohn’s disease linked with increased risk of surgical complications
December 18, 2018 - FDA Approves Motegrity (prucalopride) for Adults with Chronic Idiopathic Constipation (CIC)
December 18, 2018 - The long and short of CDK12
December 18, 2018 - Hologic’s Cynosure division introduces TempSure Surgical RF technology in North America
December 18, 2018 - CMR Surgical partners with Nicholson Center to launch U.S.-based training program for Versius
December 18, 2018 - Findings reinforce guidelines for cautious use of antipsychotics in younger populations
December 18, 2018 - Study finds new strains of hepatitis C virus in sub-Saharan Africa
December 18, 2018 - New battery-free, implantable device aids weight loss
December 18, 2018 - Parental alcohol use disorder associated with offspring marital outcomes
December 18, 2018 - Novel Breast Imaging Technique Might Cut Unnecessary Biopsies
December 18, 2018 - What can a snowflake teach us about how cancer spreads in the body?
December 18, 2018 - Management of nausea and vomiting in pregnancy costs the NHS more than previously thought
December 18, 2018 - Green leafy vegetables may reduce risk of developing liver steatosis
December 18, 2018 - Veganism linked to nutrient deficiencies and malnutrition if not planned correctly
December 18, 2018 - Coming Soon: A Tiny Robot You Swallow to Help You Stay Healthy
December 18, 2018 - Modified malaria drug proven effective at inhibiting Ebola
December 18, 2018 - Study finds epigenetic differences in the brains of individuals with schizophrenia
December 18, 2018 - Fitness instructors’ motivational comments influence women’s body satisfaction
December 18, 2018 - Study focuses on modification of lipid nanoparticles for successful brain cell targeting
December 18, 2018 - New gut bacteria may be effective against obesity, metabolic and mental disorders
December 18, 2018 - New two-in-one powder aerosol to upgrade fight against deadly superbugs in lungs
December 18, 2018 - Biofilms feed with swirling flows
December 17, 2018 - Study identifies specific neurological changes related to traumatic brain injury
December 17, 2018 - New study confirms geographic bias in lung allocation for transplant
December 17, 2018 - Research focuses on optimization of solid lipid nanoparticle that encapsulates Vinorelbine bitartrate
December 17, 2018 - Carpal tunnel syndrome – Genetics Home Reference
December 17, 2018 - A novel insulin accelerant
December 17, 2018 - Tips for caring for patients with disabilities, from a mother and physician
December 17, 2018 - Menopause-related sexual, urinary problems tied to worse quality of life
December 17, 2018 - In-school nutrition programs among students limit increases in BMI, finds study
December 17, 2018 - Risk for Hospitalization for Heart Failure Greater With Diabetes
December 17, 2018 - Food assistance may help older adults adhere to diabetes meds
December 17, 2018 - Supporting a family’s goals during a difficult pregnancy
December 17, 2018 - Neurons with Good Housekeeping Are Protected from Alzheimer’s
December 17, 2018 - New approach to tumor analysis could improve prognosis for bowel cancer patients
December 17, 2018 - New ‘epigenetics-based’ cervical cancer test outperforms Pap smear and HPV tests
December 17, 2018 - Ten year follow-up after negative colonoscopy related to reduced risk of colorectal cancer
December 17, 2018 - CTF along with NTAP and Sage announce first-ever open data portal for neurofibromatosis
December 17, 2018 - Intimacy: The Elusive Fountain of Youth?
December 17, 2018 - Will saliva translate to a real diagnostic tool?
December 17, 2018 - DFG establishes nine new Research Units and one new Clinical Research Unit
December 17, 2018 - Assisted living’s breakneck growth leaves patient safety behind
December 17, 2018 - America’s teens report dramatic increase in their use of vaping devices in just one year
December 17, 2018 - Enlarged heart linked to a higher risk of dementia
December 17, 2018 - Prostate cancer detection using MRI now first-line investigation tool
December 17, 2018 - Loughborough academics part of new project investigating effectiveness of personalized breast cancer screening
December 17, 2018 - Adolescents who use cognitive reappraisal had better metabolic measures, shows study
December 17, 2018 - Probiotics may offer therapeutic benefits for biopolar patients
December 17, 2018 - Stealth BioTherapeutics Granted Fast Track Designation for Elamipretide for the Treatment of Dry Age-Related Macular Degeneration with Geographic Atrophy
December 17, 2018 - Studies reveal role of red meat in gut bacteria, heart disease development
December 17, 2018 - Eisai enters into agreement with Eurofarma for its anti-obesity agent lorcaserin
December 17, 2018 - Researchers use brain connectome to reassess neuroimaging findings of Alzheimer’s disease
December 17, 2018 - “Miracle” baby survives Ebola in Congo and rapid a new Ebola detection device
December 17, 2018 - Mechanisms behind neonatal diabetes uncovered
December 17, 2018 - AHF urges the WHO to expedite approval process for vaccine effective against Ebola
December 17, 2018 - Study finds misuse of benzodiazepines to be highest among young adults
December 17, 2018 - TGen receives PayPal grant to underwrite costs of genetic tests for children with rare disorders
December 17, 2018 - New research highlights why HIV-infected patients suffer higher rates of cancer
December 17, 2018 - Antibiotic-resistant bacteria could soon be targeted with Alzheimer’s drug
December 17, 2018 - Rutgers scientists take an important step in making diseased hearts heal themselves
December 17, 2018 - Tailored Feedback at CRC Screen Improves Lifestyle Behaviors
December 17, 2018 - Loss of two genes drives a deadly form of colorectal cancer, reveals a potential treatment
December 17, 2018 - How the Mediterranean Diet Can Help Women’s Hearts
December 17, 2018 - Sustained connections associated with symptoms of autism
December 17, 2018 - Concussion rates among young football players were higher than previously reported
Immune T cells are built to react as fast as possible, shows study

Immune T cells are built to react as fast as possible, shows study

image_pdfDownload PDFimage_print

Without T cells, we could not survive. They are a key component of our immune system and have highly sensitive receptors on their surface that can detect pathogens. The exact way that these receptors are distributed over the surface of the T cells is still not completely understood, but the analyses by TU Wien show that previous ideas are no longer tenable.

It was previously thought that the T cell would concentrate the receptors at certain points in order to achieve the highest possible sensitivity. As a current publication by the biophysics research group at TU Wien shows, T cells are actually programmed to react as quickly as possible, and therefore their receptors are arranged at random. These results were made possible by close collaboration between the Medical University of Vienna (MUW) and the Max Planck Institute (MPI) of Biophysics in Göttingen. These new findings not only help to better understand the immune response, but are also key in developing new methods of medical treatment. These findings have now been published in the specialist journal Nature Immunology.

A needle in a haystack

“A T cell is a highly specific molecule detector,” explains Prof. Gerhard Schütz, head of the biophysics research group at the Institute of Applied Physics at TU Wien. “Each T cell only reacts to a very specific molecule, and so we need many different T cells in our bodies.” Each T cell carries many thousands of copies of the same receptor on its surface.

To trigger an immune reaction, the T cell still needs an important partner – the so-called antigen-presenting cell. The surfaces of these cells present many different molecules with the aid of special carrier proteins. Some of these molecules originate from endogenous structures and are harmless, but characteristic antigens of harmful intruders are also transported by the body on these antigen-presenting cells.

If the T cell comes into contact with one of these antigen-presenting cells, the search for a needle in a haystack begins. What happens if a molecule of the exact type for which the T cell is programed, is found amongst the many hundreds of thousands of molecules that are on the surface of the antigen-presenting cell? “Imagine that the T cell has countless versions of the same key on its surface, and now has to quickly find out whether it fits any of the hundreds of thousands of locks on the antigen-presenting cell,” explains Gerhard Schütz.

Speed counts

Controversially, it has been discussed how the T cells manage to react so extremely sensitively to a small amount of very specific antigens. A widely held theory is that a greater number of receptors on the T-cell surface are locally concentrated in clusters, and together the receptors then manage to more precisely dock with a specific antigen. When modern high-performance microscopic methods improved to the extent that images of these T-cell surfaces could be taken for the first time, this theory appeared to be confirmed. Irregular structures could be seen on the T-cell surfaces that were interpreted as receptor clusters.

But this conclusion was a little premature. “We examined the T cells very closely and focused all our efforts on improving the microscopic methods,” says Gerhard Schütz. “What was previously thought to be clusters of several receptors is probably no more than an artifact; it’s actually quite easy to image the same receptor molecule multiple times.”

The analyses carried out at TU Wien have now suggested another theory: The receptors might well be distributed randomly over the T cell. That would also explain why the immune reaction happens so quickly. Regardless of how the antigen-presenting cell comes into contact with the T cell, the T cell always has a ‘key’ that fits the ‘lock’ at this location. If this is correct, the two cells do not lose any time getting into the right position, but instead the immune reaction can be triggered immediately.

“With this, we are working at the outer limits of what is possible with the most modern microscopic methods,” says Gerhard Schütz. “It is an exciting time for immunology. We hope that, by better understanding the T-cell surface, we can make a contribution to understanding the first steps involved in identifying pathogens. We will then try to apply these findings together with our partners in immunotherapy.”

Source:

https://www.tuwien.ac.at/

Tagged with:

About author

Related Articles