Breaking News
October 17, 2018 - New drugs could reduce risk of heart disease when added to statins
October 17, 2018 - Visible and valued: Stanford Medicine’s first-ever LGBTQ+ Forum
October 17, 2018 - HVP vaccination not linked with rise in teen risky sex
October 17, 2018 - Potential ‘early warning markers’ for sepsis discovered
October 17, 2018 - Who knew? Life begins (again) at 65
October 17, 2018 - Application of blood pressure guidelines ups treatment
October 17, 2018 - Stanford researchers find that small molecule may help treat enzyme deficiency
October 17, 2018 - Speed Cameras Save Money and Lives in New York City
October 17, 2018 - Men who conform to ‘the man box’ more likely to consider suicide and violence
October 17, 2018 - Researchers aim to create more authentic organoids for drug testing, transplantation
October 16, 2018 - New blood test for pediatric brain tumor patients offers safer approach than surgical biopsies
October 16, 2018 - Age-related estrogen increase may be the culprit behind inguinal hernias in men
October 16, 2018 - Skills-Based Intervention Did Not Cut Systolic BP After Stroke, TIA
October 16, 2018 - Researchers uncover new role of TIP60 protein in controlling tumour formation
October 16, 2018 - Behind the scenes of a lifesaving heart surgery
October 16, 2018 - ‘To See the Suffering’
October 16, 2018 - Drinking concentrated rosemary extract can boost memory by up to 15%, shows research
October 16, 2018 - Medicare Advantage riding high as new insurers flock to sell to seniors
October 16, 2018 - NHS tackles prescription fraud to save millions
October 16, 2018 - New molecular switch may help develop sophisticated photomedications
October 16, 2018 - Improving access to behavioral health screenings for pregnant and postpartum women
October 16, 2018 - Health Highlights: Oct. 12, 2018
October 16, 2018 - Study holds promise for new pediatric brain tumor treatment
October 16, 2018 - Patient advocate uses MRI scans to create art and spark conversations about life with illness
October 16, 2018 - Fish oil based diets may suppress growth and spread of breast cancer cells
October 16, 2018 - Number of VHA facilities offering acupuncture has increased rapidly
October 16, 2018 - Influential Leapfrog Group jumps in to rate 5,600 surgery centers
October 16, 2018 - HIV-infected infants more likely to acquire congenital cytomegalovirus infection
October 16, 2018 - Study pinpoints new marker that can predict Crohn’s disease subtype
October 16, 2018 - Simple procedure could be efficacious intervention for failed back surgery
October 16, 2018 - New research identifies modifiable dementia risk factor in elderly people
October 16, 2018 - Zebrafish study uncovers molecular ‘brake’ that helps control eye lens development
October 16, 2018 - Overlapping copy number variations underlie autism and schizophrenia in Japanese patients
October 16, 2018 - Early menopause and diabetes may reduce life expectancy
October 16, 2018 - Majority of Americans’ ancestry can be traced through existing DNA databases
October 16, 2018 - Patients coerced into mental health care less likely to perceive treatment as effective
October 16, 2018 - Healthy elders can consume walnuts without having negative impact on weight gain, finds study
October 16, 2018 - Interactive robot helps older people exercise and detects underlying health problems
October 16, 2018 - What you need to know about autism spectrum disorder
October 16, 2018 - Antidepressants can be used to treat Alzheimer’s disease
October 16, 2018 - Study uncovers important role of PRMT1 in dilated cardiomyopathy
October 16, 2018 - Nutritional quality of breakfast linked to cardiovascular and metabolic risk factors in children
October 16, 2018 - Study uses novel approach to investigate genetic origins of mental illnesses
October 16, 2018 - Scientists develop dual anthrax-plague vaccine
October 16, 2018 - Poor Outcomes for Hispanic Infants With Congenital Heart Dz
October 16, 2018 - Global study finds youngest in class more likely to be diagnosed with ADHD
October 16, 2018 - Researchers sequence two selfish genes in the fungus Neurospora intermedia
October 16, 2018 - Survey results highlight the need for better communication between patients and HCPs about bacterial vaginosis
October 16, 2018 - Researchers develop fibrin-targeting immunotherapy to protect against neurodegeneration
October 16, 2018 - Researchers create open access database on healthy immunity
October 16, 2018 - Rice University chemist wins big award to study small surfaces
October 16, 2018 - Study finds 43% drop in stroke rate
October 16, 2018 - Researchers identify basic relationships of cell cycle and cellular senescence in the placenta
October 16, 2018 - UA professor receives NSF grant to develop antifouling materials for medical implants
October 16, 2018 - Obesity Doubles Odds for Colon Cancer in Younger Women
October 16, 2018 - Adults with ADHD not constrained in creativity
October 16, 2018 - Raising visibility for people and students with chronic illness and disability
October 16, 2018 - Allele awarded NIH grant to develop nanoantibody therapies for treatment of sepsis
October 16, 2018 - Only 59% of young adults undergoing surgery are fluid responsive
October 16, 2018 - Research points to potential new treatment for hearing loss
October 16, 2018 - MDI Biological Laboratory receives $1.2 million SEPA grant to promote data literacy
October 16, 2018 - Vast majority of dementia cases may arise from spontaneous genetic errors
October 16, 2018 - New project aims to deliver fast, effective treatment for autoimmune rheumatic diseases
October 16, 2018 - Study identifies molecular switch that controls fate of milk-producing breast cells
October 16, 2018 - Research shows diet has little influence on precursor to gout
October 16, 2018 - “Without Dr. Shumway doing his miracle work, three generations would not be here”: A Stanford heart transplant patient’s story
October 16, 2018 - Non-invasive brain stimulation sheds light on neurobiology underlying implicit bias
October 16, 2018 - Researchers demonstrate integrated technique to control production of cell therapeutics
October 16, 2018 - Breast tomosynthesis detects 34% more tumors than traditional mammography
October 16, 2018 - Rhode Island Hospital, Brown receive $800,000 grant to keep up fight against opioid epidemic
October 16, 2018 - UVA partners with health systems in AVIA network’s Medicaid Transformation Project
October 16, 2018 - Trevena Announces Oliceridine FDA Advisory Committee Meeting Outcome
October 16, 2018 - Study reveals early warning signs of heart problems in patients with newly diagnosed lupus
October 16, 2018 - Connecting the dots of Alzheimer’s disease
October 16, 2018 - New publication offers evidence-based content for global breast imaging medical community
October 16, 2018 - ‘EinsteinVision’ that improves hand-eye coordination of surgeons introduced at Harefield Hospital
October 16, 2018 - WRAIR clinical study evaluates safety and immunogenicity of Marburg vaccine
October 16, 2018 - Ketamine can be considered as alternative to opioids for short-term pain control in ED
October 16, 2018 - Endurance exercise training beneficially alters gut microbiota composition
October 15, 2018 - FDA Approves Yutiq (fluocinolone acetonide intravitreal implant) for Chronic Non-Infectious Posterior Segment Uveitis
Scientists demonstrate a new regulation mechanism for skeletal muscles

Scientists demonstrate a new regulation mechanism for skeletal muscles

image_pdfDownload PDFimage_print

An international team of scientists from the University of Florence, Italy and the Randall Division in collaboration with the ESRF, the European Synchrotron, Grenoble, France, demonstrated a new regulation mechanism for skeletal muscle.

Contraction of striated muscles (skeletal and cardiac muscles) was thought to be controlled by a calcium-dependent structural change in the actin-containing thin filaments that permits the binding of myosin motors from the neighbouring thick filaments to drive filament sliding. By synchrotron X-ray diffraction from single skeletal muscle cells, the scientists have shown that muscle contraction is actually controlled by two switches. They demonstrated that, although the well-known thin-filament mechanism is sufficient for regulation of muscle shortening against low load, force generation against high load requires a second permissive step linked to a change in the structure of the thick filament. This concept of the thick filament as a regulatory mechano-sensor provides a novel explanation for the dynamic and energetic properties of skeletal muscle. A similar mechanism is likely to operate in the heart, another striated muscle. This fundamental result, published in the journal Nature, therefore offers a promising approach for new investigations on the regulation of the cardiac muscle and new therapeutic opportunities.

Striated muscles (skeletal and cardiac muscles) contract by the relative sliding motion of two sets of overlapping filaments containing the proteins actin and myosin. According to the textbook view, contraction is triggered by the rise of the concentration of calcium ions that follows excitation of the muscle cell by a motor nerve. Binding of calcium ions to regulatory proteins in the thin actin filament releases them from their inhibitory action, allowing myosin motors from the thick myosin filament to attach and pull the actin filament in the shortening direction.

An international team of scientists from Italy, the UK and France has now demonstrated a new regulatory mechanism. For this discovery, they used small-angle X-ray diffraction from the intense light source of the ESRF to observe at the molecular scale how muscle proteins change structure inside a contracting skeletal muscle cell. This new regulatory mechanism allows the number of myosin motors to be adapted to the force developed by the contraction. When the load is low, the action of a small fraction of the motors drives muscle shortening at high velocity within a few milliseconds of the excitation, when calcium ions have activated the actin filament. When the load is high, the mechano-sensing property of the myosin filament is responsible for recruitment of the much larger fraction of motors required to generate a high force.

Small-angle X-ray diffraction pattern from a single intact skeletal muscle fibre at rest

What is the significance of this new mechanism of regulation?

Malcolm Irving, from the Randall Division of Cell & Molecular Biophysics at King’s College London, and co-author of the paper, says: ‘Conventionally, contraction of the muscles that move the skeleton was thought to be controlled through the actin filament, which is the track along which the myosin motors from the myosin filaments move, rather than through the motors themselves. However that view became increasingly difficult to reconcile with emerging evidence that the myosin motors in resting muscle are immobilised or switched OFF and cannot interact with actin. How could such a switched OFF myosin motor sense the state of the actin filament at a distance? The new results provide an answer: most of the myosin motors in resting muscle are switched OFF, and this is probably important for minimising the resting metabolism of the muscle cells, but a small fraction of motors can bind to actin and sense its regulatory state. Not only can this small fraction of motors drive unloaded shortening with high metabolic efficiency, but they also have a signalling function: when the external load on the muscle is high, they stretch the myosin filaments, and that stretch provides the signal to unlock the majority of motors only when they are needed for contraction against a high load.’

New perspectives for the regulation of cardiac muscle

As thick filament structure and protein composition are essentially the same in heart and skeletal muscle, thick filament mechano-sensing may also be a fundamental component of the regulation of contractility in the heart. This discovery opens the possibility of new approaches for therapeutic control of cardiac output.

Vincenzo Lombardi, from University of Florence and co-author, says: ‘Our results show that muscle contraction is controlled by two switches: the actin filament switch conveys the ON signal from the central nervous system, and the myosin filament switch adapts the response of the muscle to the external load, ensuring that its efficiency is maximised. However, this is not the only way the myosin motor regulates its activity. Other contractile systems, like smooth muscle, which do not require a fast response, use an intra-molecular mechanism of regulation that consists of an increase in the level of phosphorylation of the regulatory portion of the motor itself. The discovery that in skeletal muscle the myosin filament acts as a mechano-sensor that adapts the number of motors to the external load gives a paradigmatic example of how the evolution of the motor system in this case has optimised performance and efficiency and suggests a promising approach for new investigations on the regulation of cardiac muscle.’

‘This work again illustrates the uniqueness of small-angle X-ray diffraction based muscle interferometry. Presently we are striving to optimise this technique for cardiac muscle. This method will become even more powerful for muscle research after the new ESRF upgrade programme, the ESRF-EBS project, which will provide us with an extremely brilliant source’, adds Theyencheri Narayanan scientist in charge of a beamline at the ESRF and co-author.

Tagged with:

About author

Related Articles