Breaking News
February 16, 2019 - Conformance of genetic characteristics found to be crucial for longer preservation of kidney graft
February 16, 2019 - Researchers use optogenetic tool to control, visualize receptor signals in neural cells
February 16, 2019 - New reversible antiplatelet therapy could reduce risk of blood clots, prevent cancer metastasis
February 16, 2019 - Testosterone is not the only hormone needed for penis development
February 16, 2019 - FDA Advisory Committee Recommends Approval of Spravato (esketamine) Nasal Spray for Adults with Treatment-Resistant Depression
February 15, 2019 - Heart surgery technology developed at Baptist Health debuts after years of secrecy
February 15, 2019 - Prescription Opioids Double Risk of Triggering Fatal Car Crash
February 15, 2019 - New study helps doctors better understand high blood pressure in pregnant women
February 15, 2019 - Beta wave control in Parkinson’s diseased brain could be a potential therapy
February 15, 2019 - Media representations of love may justify gender-based violence in young people
February 15, 2019 - Yoga May Help With Rheumatoid Arthritis Symptoms, Severity
February 15, 2019 - Obstructive sleep apnea linked to inflammation, organ dysfunction
February 15, 2019 - Master your mind: A challenge from WELL for Life
February 15, 2019 - Why Some Brain Tumors Respond to Immunotherapy
February 15, 2019 - Must-Reads Of The Week From Brianna Labuskes
February 15, 2019 - Researchers uncover novel mechanism and potential new therapeutic target for Alzheimer’s
February 15, 2019 - Genetic variations in a fourth gene associated with higher ALL risk in Hispanic children
February 15, 2019 - Disruptive behavioral problems in kindergarten linked with lower employment earnings in adulthood
February 15, 2019 - New bioengineered device enhances the production of T-cells
February 15, 2019 - HDL proteome behaves like a tiny Velcro ball that is rolling on surfaces
February 15, 2019 - Puerto Rican children more likely to have poor or decreasing use of asthma inhalers
February 15, 2019 - Quality of patient care does not improve after physician-hospital integration
February 15, 2019 - Synopsys release new software for implant design and patient-specific planning
February 15, 2019 - 6 out of 10 hip replacements last 25 years or longer
February 15, 2019 - Health Tip: What You Should Know About Antibiotics
February 15, 2019 - New research challenges medical consensus that adenoids and tonsils significantly shrink during teenage years
February 15, 2019 - Discovery of weakness in a rare cancer could be exploited with drugs
February 15, 2019 - UVA scientists find potential explanation for mysterious cell death in Alzheimer’s, Parkinson’s
February 15, 2019 - New rules requiring female athletes to lower testosterone levels are based on flawed data
February 15, 2019 - Researchers comprehensively sequence the human immune system
February 15, 2019 - Researchers study animal venoms to identify new medicines for treating diseases
February 15, 2019 - Movement of wrist bones revealed by MRI and computer modeling
February 15, 2019 - Philips introduces new premium digital X-ray room to help shorten patient wait times
February 15, 2019 - Women fare worse than men following aortic heart surgery, study finds
February 15, 2019 - High-protein and low-calorie diet helps older adults lose weight safely, shows study
February 15, 2019 - Drug microdosing effects may not measure up to big expectations
February 15, 2019 - Discharged, Dismissed: ERs Often Miss Chance To Set Overdose Survivors On ‘Better Path’
February 15, 2019 - A digitized lab environment to be showcased at smartLAB 2019
February 15, 2019 - Scientists uncover main mechanisms of fluconazole drug resistance
February 15, 2019 - New study seeks to understand how colibactin causes cancer
February 15, 2019 - Photoacoustic imaging accurately measures the temperature of deep tissues
February 15, 2019 - Large study finds no association between phthalate exposure and breast cancer risk
February 15, 2019 - New research explains presence of ‘natural’ magnetism in human cells
February 15, 2019 - Bio-Rad launches new digital PCR system and kit for monitoring treatment response in CML patients
February 15, 2019 - Scientists shed light on damaging cell effects linked to aging
February 15, 2019 - Celiac disease may be caused by stomach bug in childhood
February 15, 2019 - NHS performance figures highlight the true scale of Emergency Department crisis
February 15, 2019 - High intensity exercise may improve health by increasing gut microbiota diversity
February 15, 2019 - Apellis’ APL-2 Receives Orphan Drug Designation from the FDA for the Treatment of Autoimmune Hemolytic Anemia
February 15, 2019 - Couples creating art or playing board games release ‘love hormone’
February 15, 2019 - Glimpsing The Future At Gargantuan Health Tech Showcase
February 15, 2019 - Common herbicide found to increase the risk of lymphoma
February 15, 2019 - Over-abundance of energy to cells could increase cancer risk
February 15, 2019 - Oxford Genetics appoints Jocelyne Bath as new Chief Operating Officer
February 15, 2019 - Castration-resistant metastatic prostate cancer responds to combination of immune checkpoint inhibitors
February 15, 2019 - Large-scale clinical trial begins to study liver transplantation between people with HIV
February 15, 2019 - Cannabis use among adolescents linked with increased risk of depression in adulthood
February 15, 2019 - Fractures, head injuries common in electric scooter accidents, UCLA study finds
February 15, 2019 - Prenatal maternal depression has important consequences for infant temperament, study shows
February 15, 2019 - Stereotactic body radiotherapy effective in treating men with low- or intermediate-risk prostate cancer
February 15, 2019 - Zogenix Submits New Drug Application to U.S. Food & Drug Administration for Fintepla for the Treatment of Dravet Syndrome
February 15, 2019 - Certain birthmarks warrant quick treatment, pediatricians say
February 15, 2019 - New machine learning method predicts if atypical ductal hyperplasia will turn cancerous
February 15, 2019 - Whole-genome sequencing and sharing real-time data could limit spread of foodborne bacteria
February 15, 2019 - FDA warns doctor for illegally marketing unapproved implantable device
February 15, 2019 - New injury documentation tool may provide better evidence for elder abuse cases
February 15, 2019 - Physiological age is a better predictor of survival than chronological age, shows study
February 15, 2019 - New study reveals high success rate for hip and knee replacements
February 15, 2019 - Prenatal exposures to BPA may pose threat to human ovarian function
February 15, 2019 - Suspicious spots on the lungs of children with rhabdomyosarcoma do not behave like metastases
February 15, 2019 - Diet drinks daily could raise stroke risk says study
February 15, 2019 - Many Systematic Reviews Do Not Fully Report Adverse Events
February 15, 2019 - Seven tips to protect your child from burns
February 15, 2019 - Keynote speakers announced for CBD Expo MIDWEST
February 15, 2019 - New DNA methylation GrimAge tool allows you to predict lifespan and healthspan
February 15, 2019 - New AI-driven platform analyze how pathogens infect human cells
February 15, 2019 - Increased activity of EHMT2 gene deficient neurons could cause autism in humans
February 15, 2019 - Recurring UTIs may mask symptoms of bladder or kidney cancer
February 15, 2019 - Researchers conduct extensive comparison of drugs used in treating neuroendocrine tumors
February 15, 2019 - Depression prevention for pregnant women and new mothers – new recommendations
New study aims to develop nucleoside therapy as treatment for mitochondrial depletion syndromes

New study aims to develop nucleoside therapy as treatment for mitochondrial depletion syndromes

image_pdfDownload PDFimage_print

Hundreds of types of mitochondrial disease affect up to 38 million people worldwide, yet there are very few effective treatments, forcing patients and doctors to rely on symptom management to battle the serious and potentially fatal genetic disorder that starves the body’s cells of energy.

Now, a pioneering project jointly funded by peak patient groups in Australia and the United Kingdom aims to develop nucleoside therapy as a treatment for mitochondrial depletion syndromes, in which cells cannot extract sufficient energy from food to power vital organs.

Symptoms of mitochondrial depletion syndromes can include profound muscle weakness causing immobility and impaired breathing requiring mechanical ventilation, as well as liver failure, intractable seizures and neurodegenerative deficits. Most patients die before the age of five years.

The study, funded by the Mito Foundation (incorporated as the Australian Mitochondrial Disease Foundation) and The Lily Foundation, involves multi-disciplinary teams at mitochondrial centres attached to Newcastle University (UK), the University of Cambridge and Cardiff University.

Researchers aim to develop an effective, bioavailable form of nucleoside bypass therapy, in which modified molecular ‘building blocks’ are used to increase production of healthy mitochondrial DNA.

In what is hoped to be a precursor to future drug trials, the research project combines a detailed patient study with testing of treatment formulations on skin cells taken from patients with mitochondrial depletion syndrome RRM2B.

Professor Robert McFarland, a principal investigator from the Wellcome Centre for Mitochondrial Research at Newcastle University and a Lily Foundation Medical Board member, said he is delighted The Lily Foundation and the Mito Foundation are funding this important research project.

“We hope that by testing this treatment in cells grown in the laboratory we can optimize the type and combination of nucleosides to use in animal models, and subsequently in human trials,” he said.

The announcement comes almost one year after the death of UK baby Charlie Gard, who succumbed to a form of mitochondrial depletion syndrome on 28 July 2017, just before his first birthday, following a prolonged public court battle to access experimental nucleoside therapy being developed in the US.

Approximately three Australian children are born each year with mitochondrial depletion syndrome, which occurs in at least 1 per 100,000 births, according to Professor David Thorburn, Mitochondrial Research Group Leader at Murdoch Children’s Research Institute, and member of the Mito Foundation board and its Scientific and Medical Advisory Panel.

“This research project is exciting because it addresses the major issue in that we currently lack effective targeted treatments for most forms of mitochondrial disease,” said Professor Thorburn, who was involved in reviewing the grant application.

“It is absolutely critical to develop treatments that improve patient outcomes and have an evidence base to justify their use. This project seeks to do that for mitochondrial DNA depletion syndromes.

“Early-stage research from the US and elsewhere suggests nucleoside therapy may be effective in a mitochondrial DNA depletion syndrome called TK2 deficiency, which primarily affects muscles. It is not yet clear if it may work for other forms of mitochondrial DNA depletion syndrome such as RRM2B, which affects the muscles, brain and other organs.”

Sean Murray, CEO of the Mito Foundation, said the organization is committed to funding projects that will have maximum impact for the mitochondrial disease community.

“Nucleoside therapy holds real promise for a potential treatment that could improve and save lives, not just in Australia but around the world. International collaborations like ours ensure investment in high quality mitochondrial research, regardless of location, to develop treatments for this complex and devastating disease,” Mr Murray said.

About nucleoside therapy

Mitochondria contain their own DNA, known as mitochondrial DNA or mtDNA, which is vital for mitochondria to generate the energy needed to power our cells. The quality and quantity of mtDNA must be maintained for the mitochondria to produce key proteins necessary for their function. Problems with mtDNA maintenance can reduce the amount and quality of mtDNA and lead to impaired energy production, which in turn can cause mitochondrial DNA depletion syndrome.

Four chemical ‘building blocks’ are needed to make mtDNA, collectively known as deoxynucleoside triphosphates, or dNTPs, which need to be present in a carefully balanced pool within mitochondria. If this pool is not maintained, or the relative proportions of the four different dNTPs within the pool are disrupted, then mtDNA is not made and this can result in mitochondrial DNA depletion syndrome.

Research has shown that providing deoxynucleosides (nucleosides), or similar building blocks known as deoxynucleotides (nucleotides), may correct the depletion by bypassing the block that is impairing the production of one or more dNTPs. This may restore the amount and balance of dNTPs available for making or repairing mtDNA, and lead to improvement in problems associated with the condition.

Nucleoside therapy has already been used to treat mitochondrial depletion syndrome TK2, where only two of the four nucleosides are depleted. However, extending the currently available nucleoside therapy to other depletion syndromes poses a number of challenges for scientists, including getting the nucleosides to their target in the body, and ensuring the pool of nucleosides is balanced so as not to cause further problems. As a result, no patients with depletion syndromes other than TK2 have been successfully treated with the currently available compounds to date.

This new research hopes to change this by developing modified nucleosides that are far more like a medicine than the compounds currently available, and which can be delivered to the right place in the cell and do their job effectively without any harmful side effects.

About author

Related Articles