Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
New study aims to develop nucleoside therapy as treatment for mitochondrial depletion syndromes

New study aims to develop nucleoside therapy as treatment for mitochondrial depletion syndromes

Hundreds of types of mitochondrial disease affect up to 38 million people worldwide, yet there are very few effective treatments, forcing patients and doctors to rely on symptom management to battle the serious and potentially fatal genetic disorder that starves the body’s cells of energy.

Now, a pioneering project jointly funded by peak patient groups in Australia and the United Kingdom aims to develop nucleoside therapy as a treatment for mitochondrial depletion syndromes, in which cells cannot extract sufficient energy from food to power vital organs.

Symptoms of mitochondrial depletion syndromes can include profound muscle weakness causing immobility and impaired breathing requiring mechanical ventilation, as well as liver failure, intractable seizures and neurodegenerative deficits. Most patients die before the age of five years.

The study, funded by the Mito Foundation (incorporated as the Australian Mitochondrial Disease Foundation) and The Lily Foundation, involves multi-disciplinary teams at mitochondrial centres attached to Newcastle University (UK), the University of Cambridge and Cardiff University.

Researchers aim to develop an effective, bioavailable form of nucleoside bypass therapy, in which modified molecular ‘building blocks’ are used to increase production of healthy mitochondrial DNA.

In what is hoped to be a precursor to future drug trials, the research project combines a detailed patient study with testing of treatment formulations on skin cells taken from patients with mitochondrial depletion syndrome RRM2B.

Professor Robert McFarland, a principal investigator from the Wellcome Centre for Mitochondrial Research at Newcastle University and a Lily Foundation Medical Board member, said he is delighted The Lily Foundation and the Mito Foundation are funding this important research project.

“We hope that by testing this treatment in cells grown in the laboratory we can optimize the type and combination of nucleosides to use in animal models, and subsequently in human trials,” he said.

The announcement comes almost one year after the death of UK baby Charlie Gard, who succumbed to a form of mitochondrial depletion syndrome on 28 July 2017, just before his first birthday, following a prolonged public court battle to access experimental nucleoside therapy being developed in the US.

Approximately three Australian children are born each year with mitochondrial depletion syndrome, which occurs in at least 1 per 100,000 births, according to Professor David Thorburn, Mitochondrial Research Group Leader at Murdoch Children’s Research Institute, and member of the Mito Foundation board and its Scientific and Medical Advisory Panel.

“This research project is exciting because it addresses the major issue in that we currently lack effective targeted treatments for most forms of mitochondrial disease,” said Professor Thorburn, who was involved in reviewing the grant application.

“It is absolutely critical to develop treatments that improve patient outcomes and have an evidence base to justify their use. This project seeks to do that for mitochondrial DNA depletion syndromes.

“Early-stage research from the US and elsewhere suggests nucleoside therapy may be effective in a mitochondrial DNA depletion syndrome called TK2 deficiency, which primarily affects muscles. It is not yet clear if it may work for other forms of mitochondrial DNA depletion syndrome such as RRM2B, which affects the muscles, brain and other organs.”

Sean Murray, CEO of the Mito Foundation, said the organization is committed to funding projects that will have maximum impact for the mitochondrial disease community.

“Nucleoside therapy holds real promise for a potential treatment that could improve and save lives, not just in Australia but around the world. International collaborations like ours ensure investment in high quality mitochondrial research, regardless of location, to develop treatments for this complex and devastating disease,” Mr Murray said.

About nucleoside therapy

Mitochondria contain their own DNA, known as mitochondrial DNA or mtDNA, which is vital for mitochondria to generate the energy needed to power our cells. The quality and quantity of mtDNA must be maintained for the mitochondria to produce key proteins necessary for their function. Problems with mtDNA maintenance can reduce the amount and quality of mtDNA and lead to impaired energy production, which in turn can cause mitochondrial DNA depletion syndrome.

Four chemical ‘building blocks’ are needed to make mtDNA, collectively known as deoxynucleoside triphosphates, or dNTPs, which need to be present in a carefully balanced pool within mitochondria. If this pool is not maintained, or the relative proportions of the four different dNTPs within the pool are disrupted, then mtDNA is not made and this can result in mitochondrial DNA depletion syndrome.

Research has shown that providing deoxynucleosides (nucleosides), or similar building blocks known as deoxynucleotides (nucleotides), may correct the depletion by bypassing the block that is impairing the production of one or more dNTPs. This may restore the amount and balance of dNTPs available for making or repairing mtDNA, and lead to improvement in problems associated with the condition.

Nucleoside therapy has already been used to treat mitochondrial depletion syndrome TK2, where only two of the four nucleosides are depleted. However, extending the currently available nucleoside therapy to other depletion syndromes poses a number of challenges for scientists, including getting the nucleosides to their target in the body, and ensuring the pool of nucleosides is balanced so as not to cause further problems. As a result, no patients with depletion syndromes other than TK2 have been successfully treated with the currently available compounds to date.

This new research hopes to change this by developing modified nucleosides that are far more like a medicine than the compounds currently available, and which can be delivered to the right place in the cell and do their job effectively without any harmful side effects.

About author

Related Articles