Breaking News
February 24, 2019 - Novel MRI sensor can peer deep into the brain to detect intracellular calcium activity
February 24, 2019 - AHA News: Diabetes Remains Dangerous Despite Modern Medicine
February 24, 2019 - Dup15q syndrome – Genetics Home Reference
February 24, 2019 - Could ‘Cardio-obstetrics’ curb rise in pregnancy-related deaths?
February 24, 2019 - Using computer model to visualize brain’s internal valuation system
February 24, 2019 - Study reveals insights into how the brain learns new locomotor patterns
February 24, 2019 - Depression Screening: MedlinePlus Lab Test Information
February 24, 2019 - Researchers discover a weakness in a rare cancer that could be exploited with drugs
February 23, 2019 - U.S.-based patient advocacy organizations received majority of pharma donations, finds study
February 23, 2019 - UCL and AIIMS collaborates to increase academic and student exchange
February 23, 2019 - Mechanism behind how diabetes causes muscle loss revealed
February 23, 2019 - Hepatocellular carcinoma diagnosis, prognosis and treatment may improve by identifying a protein
February 23, 2019 - The American Heart Association issues new reference toolkit for healthcare providers
February 23, 2019 - Studies explore physiological dangers that climate change will have on animal life
February 23, 2019 - Penn study reveals increase in health-related internet searches before ER visits
February 23, 2019 - Intensive therapy during early stages of MS leads to better long-term outcomes
February 23, 2019 - Prenatal Fluconazole Exposure Increases Neonatal Risks
February 23, 2019 - Mental Health Screening: MedlinePlus Lab Test Information
February 23, 2019 - Study suggests birth mechanics are part of the process that leads to autism
February 23, 2019 - Unhealthy diet linked to poor mental health
February 23, 2019 - Study gives a snapshot of crocodile evolution
February 23, 2019 - Research finds steep rise in self-poisonings among young people
February 23, 2019 - American Gastroenterological Association announces “AGA Future Leaders Program”
February 23, 2019 - Scientists uncover new mechanisms regulating neural stem cells
February 23, 2019 - Combinations of certain insecticides turn out to be lethal for honeybees
February 23, 2019 - AHA News: Why Are Black Women at Higher Risk of Dying From Pregnancy Complications?
February 23, 2019 - NIMH » Anxiety Disorders
February 23, 2019 - Autistic people urgently need access to tailored mental health support
February 23, 2019 - Newly designed molecule could benefit people with Friedrich’s Ataxia
February 23, 2019 - Chinese CRISPR twins may have better cognition and memory
February 23, 2019 - Study finds new genetic clues associated with asthma in African ancestry populations
February 23, 2019 - Fetal signaling pathways may offer future opportunities to treat lung damage
February 23, 2019 - Early-stage osteoarthritis drug wins prestigious innovation award
February 23, 2019 - Researchers report positive findings with dasotraline for ADHD in children ages 6-12
February 23, 2019 - News study reanalyzes the effects of noncaloric sweeteners on gut microbiota
February 23, 2019 - New device allows scientists to reproduce blow effects on the heart in lab
February 23, 2019 - Paying more attention to antibiotic dosing could improve clinical outcomes for CF patients
February 23, 2019 - Big-data analysis finds new link between popular arthritis drug and heart valve calcification
February 23, 2019 - Holy herb identified as a potential treatment for Alzheimer’s disease
February 23, 2019 - New technology platform digitally counts growth factors in single cells
February 23, 2019 - Physicians still remain at higher risk for burnout compared to other professionals
February 23, 2019 - Surgery and other treatments offer viable options for adult scoliosis
February 23, 2019 - Reduced antibody adaptability may make the elderly more vulnerable to influenza
February 23, 2019 - Researchers find increased rates of CRC screening in Kentucky after Medicaid expansion
February 23, 2019 - Neighborhood income, education associated with risk of disability progression in MS patients
February 23, 2019 - Endocrine Society opposes new rule that restricts access to Title X Family Planning Program
February 23, 2019 - 2019 guidelines for management of patients with atrial fibrillation
February 23, 2019 - Surprise rheumatoid arthritis discovery points to new treatment for joint inflammation
February 23, 2019 - A just-right fix for a tiny heart
February 23, 2019 - UMass Amherst scientist explores role of citrus peel in decreasing gut inflammation
February 23, 2019 - Owlstone Medical and Shanghai Renji Hospital collaborate to initiate breath biopsy lung cancer trial
February 23, 2019 - AMSBIO’s comprehensive portfolio of knock-out cell lines and lysates
February 23, 2019 - New app reliably determines physicians’ skills in forming accurate, efficient diagnoses
February 23, 2019 - Peripheral nerve injury can trigger the onset and spread of ALS, shows study
February 23, 2019 - Researchers uncover mechanisms that prevent tooth replacement in mice
February 23, 2019 - Once-a-day capsule offers new way to reduce symptoms of chronic breathlessness
February 23, 2019 - FDA Adds Boxed Warning for Increased Risk of Death with Gout Medicine Uloric (febuxostat)
February 23, 2019 - Phone-based intervention aids rheumatoid arthritis care
February 23, 2019 - Opioid epidemic makes eastern inroads and targets African-Americans
February 23, 2019 - New identified biomarker predicts patients who might benefit from HER2-targeted agents
February 23, 2019 - Study offers new insights into mechanisms of changes in erythrocytes under stress
February 23, 2019 - Antipsychotic polypharmacy may be beneficial for schizophrenia patients
February 23, 2019 - Researchers investigate how marijuana and tobacco co-use affects quit attempts by smokers
February 23, 2019 - Patients with diabetes mellitus have high risk of stable ischemic heart disease
February 23, 2019 - Transparency on healthcare prices played key role in Arizona health system’s turnaround
February 23, 2019 - A comprehensive, multinational review of peppers around the world
February 23, 2019 - Study finds modest decrease in burnout among physicians
February 23, 2019 - A simple change can drastically reduce unnecessary tests for urinary tract infections
February 23, 2019 - Deep Learning-Enhanced Device Detects Diabetic Retinopathy
February 23, 2019 - Researchers discover new binding partner for amyloid precursor protein
February 23, 2019 - Modest decrease seen in burnout among physicians, researchers say | News Center
February 23, 2019 - Transplanting bone marrow of young mice into old mice prevents cognitive decline
February 23, 2019 - Mogrify to accelerate novel IP and cell therapies using $3.7m USD funding
February 23, 2019 - Johns Hopkins study describes cells that may help speed bone repair
February 23, 2019 - Scientists demonstrate influence of food odors on proteostasis
February 23, 2019 - Researchers unlock the secret behind reproduction of fish called ‘Mary’
February 23, 2019 - Acupuncture Could Help Ease Menopausal Symptoms
February 23, 2019 - Researchers use AI to detect early signs of Alzheimer’s
February 23, 2019 - On recovery, vulnerability and ritual: An exhibit in white | News Center
February 23, 2019 - Memory Stored in Unexpected Region of the Brain
New discoveries show how protein droplets do more than keep cells’ interiors tidy

New discoveries show how protein droplets do more than keep cells’ interiors tidy

image_pdfDownload PDFimage_print

Inside cells, where DNA is packed tightly in the nucleus and rigid proteins keep intricate transport systems on track, some molecules have a simpler way of establishing order. They can self-organize, find one another in crowded spaces, and quickly coalesce into droplets­­ – like oil in water.

Now, new discoveries from Howard Hughes Medical Institute (HHMI) scientists reported July 5, 2018, in the journal Science demonstrate that these droplets do more than keep cells’ interiors tidy.

In one study, HHMI Investigator Pietro De Camilli and colleagues have shown how liquid droplets inside neurons keep signals racing through the brain. In the other, a team led by HHMI Investigator Zhijian “James” Chen has discovered that droplets of a danger-sensing enzyme generate signals that launch an immune response.

The formation of these droplets is a phenomenon known as phase separation. In the last decade, biologists have watched proteins and RNA molecules rapidly organize themselves into droplets inside test tubes and spotted liquid-like droplets inside cells.

But it hasn’t always been clear what, if any, advantages these droplets provide. The new discoveries from De Camilli and Chen offer an answer – a clear link between phase separation and biological function.

Neural droplets

In his lab at the Yale School of Medicine, De Camilli studies how neurons manage the neurotransmitters that relay signals between neighboring cells. Inside cells, these signaling molecules reside in tiny membrane-bound spheres called synaptic vesicles. When an incoming message arrives, vesicles release their contents into the synapse, the space across which a cell communicates with its neighbor.

Each cell can store thousands of vesicles in structures called nerve terminals. At times, a single terminal may need to release more than 100 synaptic vesicles in a second. So it’s crucial that the reserves are readily accessible, De Camilli says.

Using an electron microscope, scientists have seen that synaptic vesicles cluster together in compact structures. In the 1980s, as a postdoctoral researcher in the laboratory of Paul Greengard, De Camilli found that these clusters are highly enriched in a protein associated with the vesicle surface. The researchers called the protein synapsin. “We hypothesized that synapsin may help keep vesicles together, but we never really understood how it worked,” De Camilli says.

No membrane or structure encases the clusters, and De Camilli says he wondered for decades what held them together. When he heard about other biologists’ phase separation discoveries, he suspected the phenomenon might also apply to synapsin.

Postdoctoral researcher Dragomir Milovanovic was struck by some features of synapsin that resemble those of other proteins that can phase separate. He dropped a solution of fluorescent synapsin molecules onto a cover slip and watched them quickly coalesce into droplets. Occasionally, two droplets merged into one, just like oil droplets finding one another in water. In other experiments, Milovanovic observed individual synapsin molecules moving freely between droplets. Just as the scientists had guessed, synapsin was behaving like a fluid.

Milovanovic went on to show that synapsin can even organize vesicle-like structures – like those inside nerve cells – into droplets. What’s more, the droplets rapidly break up when exposed to a signal that triggers neurotransmitter release. “You go from beautiful droplets to the complete disassembly of droplets,” De Camilli says, explaining that this mimics the natural dispersion of synaptic vesicles that occurs when nerve cells communicate.

In nerve cells, droplets of synaptic vesicles offer a clear advantage, he says: a ready supply of neurotransmitter messengers. The finding explains how neurons can keep up when the demand for neurotransmitter release is high.

An immune alert

At the University of Texas Southwestern Medical Center, Chen’s work with liquid droplets helped explain a different puzzle: how a DNA-sensing enzyme alerts the immune system to infection. That enzyme is cyclic GMP-AMP synthase, or cGAS, which Chen’s lab discovered in 2012.

The enzyme floats in the cytoplasm of cells and switches on when it encounters DNA. Since a cell’s own genes are contained in its nucleus and mitochondria, DNA in the cytoplasm is a signal that something is amiss ­- usually, that a pathogen is present. cGAS responds by generating cGAMP, a messenger molecule that calls on the body’s first line of defense – the innate immune system – to counter the suspected threat.

A few oddities about the enzyme’s behavior were, at first, difficult to explain. Why, for example, did long DNA molecules activate it more efficiently than short ones? A clue came from the concentrated speckles that Chen and his colleagues had seen the enzyme form inside cells when bound to DNA. Perhaps the enzyme was undergoing phase separation, they thought.

Sure enough, when graduate student Mingjian Du mixed cGAS and DNA in a test tube, he saw characteristically liquid behavior. The DNA-bound enzyme formed compact droplets, molecules diffused from one droplet to the next, and occasionally two droplets merged into one. “We suspected this might happen, but it’s quite striking when you see that it happens in such an efficient manner,” Chen says.

Du’s experiments established that the enzyme forms droplets only in the presence of DNA. These droplets are critical for pathogen sensing – they appear to act as microreactors, bringing the enzyme together with everything it needs to generate the immune-activating messenger molecule, Chen says. Longer pieces of DNA are better at promoting droplet formation than short ones.

And because DNA must be present above a threshold level before these droplets form, cGAS rarely calls the innate immune system to action unnecessarily. Waiting until enough DNA is present to trigger phase separation effectively lets the enzyme distinguish friends from foe, Chen says.

Sometimes, he notes, cells fail to achieve that fine balance. Then, cGAS, and consequently the immune system, overreact to a cell’s own DNA, resulting in autoimmune diseases such as lupus or arthritis. Understanding how phase separation regulates this enzyme may help scientists devise ways to correct such problems.

Source:

https://www.hhmi.org/news/protein-droplets-keep-neurons-at-the-ready-and-immune-system-in-balance

Tagged with:

About author

Related Articles