Breaking News
February 20, 2019 - Health Tip: Get Your Child to School on Time
February 20, 2019 - Shortcut strategy for screening compounds with clinical potentials for drug development
February 20, 2019 - Common acid reflux drugs tied to elevated risk for kidney disease
February 20, 2019 - Microbiome could be culprit when good drugs do harm
February 20, 2019 - Prenatal exposure to forest fires causes stunted growth in children
February 20, 2019 - Gene therapy restores hearing in mice with congenital genetic deafness
February 20, 2019 - First molecular test predicts treatment response for kidney cancer
February 20, 2019 - New method for improved visualization of single-cell RNA- sequencing data
February 20, 2019 - Researchers capture altered brain activity patterns of Parkinson’s in mice
February 20, 2019 - A possible blood test for detecting Alzheimer’s disease before symptoms show
February 20, 2019 - Primary care physicians associated with longevity, new research finds
February 19, 2019 - New study identifies many key lessons to establish sanctioned safe consumption sites
February 19, 2019 - Single CRISPR treatment can safely and stably correct genetic disease
February 19, 2019 - Multinational initiative to study familial primary distal renal tubular acidosis
February 19, 2019 - Breakthrough study highlights the promise of cell therapies for muscular dystrophy
February 19, 2019 - Subsymptom Threshold Exercise Speeds Concussion Recovery
February 19, 2019 - Midline venous catheters – infants: MedlinePlus Medical Encyclopedia
February 19, 2019 - Searching for side effects
February 19, 2019 - Humanity is all right, probably, although human extinction remains quite possible, researcher says
February 19, 2019 - Having Anesthesia Once as a Baby Does Not Cause Learning Disabilities, New Research Shows
February 19, 2019 - Anti-cancer immunotherapy could be used to fight HIV
February 19, 2019 - Customized Micropatterning for Improved Physiological Relevance
February 19, 2019 - Unique gene therapy approach paves new way to tackle rare, inherited diseases
February 19, 2019 - Activating gene that helps excite neurons reverses depression in male mice
February 19, 2019 - Science Puzzling Out Differences in Gut Bacteria Around the World
February 19, 2019 - Cells that destroy the intestine
February 19, 2019 - On recovery, vulnerability and ritual: An exhibit in white
February 19, 2019 - Scientific Duo Gets Back To Basics To Make Childbirth Safer
February 19, 2019 - COPD patients need more support when understanding new chest symptoms
February 19, 2019 - Using light-based method for production of pharmaceutical molecules
February 19, 2019 - Scientists find link between inflammation and cancer
February 19, 2019 - The High Cost Of Sex: Insurers Often Don’t Pay For Drugs To Treat Problems
February 19, 2019 - Hearing impairment associated with accelerated cognitive decline with age
February 19, 2019 - Researchers identify multiple genetic variants associated with body fat distribution
February 19, 2019 - Influenza and common cold are completely different diseases, study shows
February 19, 2019 - Scientists untangle how microbes manufacture key antibiotic compound
February 19, 2019 - Greater primary care physician supply associated with longer life spans
February 19, 2019 - HIV-1 protein suppresses immune response more broadly than thought
February 19, 2019 - Brain imaging indicates potential success of drug therapy in depressive patients
February 19, 2019 - For 2020 Dem Hopefuls, ‘Medicare-For-All’ Is A Defining Issue, However They Define It
February 19, 2019 - Specialized lung cells appear in the developing fetus much earlier than previously thought
February 19, 2019 - KU professor discusses promise of brain-computer interface to aid, restore communication
February 19, 2019 - Highly effective solution for detecting onset of aggregation in nanoparticles
February 19, 2019 - Early marker of cardiac damage triggered by cancer treatment identified
February 19, 2019 - Antidepressant drug could save people from deadly sepsis, research suggests
February 19, 2019 - CRISPR technology creates pluripotent stem cells that are ‘invisible’ to the immune system
February 19, 2019 - New study establishes how stress favors breast cancer growth and spread
February 19, 2019 - Midlife Systemic Inflammation Linked to Later Cognitive Decline
February 19, 2019 - Therapy derived from parasitic worms downregulates proinflammatory pathways
February 19, 2019 - Antimicrobial reusable coffee cups are less likely to become contaminated with bacteria, study shows
February 19, 2019 - Harnessing the evolutionary games played by cancer cells to advance therapies
February 19, 2019 - AHA News: Heart Transplant Survivor Gets Wedding Proposal at Finish Line
February 19, 2019 - HIV hidden in patients’ cells can now be accurately measured
February 19, 2019 - Research finds reasons for sudden cardiac death in patients with stable ischemic disease
February 19, 2019 - New protocol could help physicians to rule out bacterial infections in infants
February 19, 2019 - Women experiencing miscarriage should be offered treatment choices
February 19, 2019 - New protocol can help identify febrile infants at low risk for serious bacterial infections
February 19, 2019 - Innovative way to block HIV runs into a roadblock
February 19, 2019 - Springer Nature with BCRF conduct pilot project to make their research datasets more accessible
February 19, 2019 - Study finds neuromelanin-sensitive MRI as potential biomarker for psychosis
February 19, 2019 - Improvements in cardiovascular care for elderly save billions in health care costs
February 19, 2019 - Chilean food regulations are changing food perceptions and purchasing habits, study suggests
February 19, 2019 - Index endoscopy results are crucial for assessment of Barrett’s patients
February 18, 2019 - Breast cancer screening age should be lowered to 35
February 18, 2019 - Brain synchronization depends on the language of communication
February 18, 2019 - Drug Company Payments Over Time May Influence Rx Practices
February 18, 2019 - Despite socioeconomic gains, black-white ‘health gap’ remains
February 18, 2019 - Researchers report progress in the treatment of aggressive brain tumors
February 18, 2019 - Scientists discover trigger that turns strep infections into devastating disease
February 18, 2019 - Scanning children’s teeth may predict future mental health issues
February 18, 2019 - Health Highlights: Feb. 14, 2019
February 18, 2019 - New knowledge could help predict and prevent depression
February 18, 2019 - More primary care physicians leads to longer life spans | News Center
February 18, 2019 - Study examines link between supply of primary care physicians and life expectancy
February 18, 2019 - New study assesses screen time in young children
February 18, 2019 - Patented IU discovery to treat ARDS has been optioned to Theratome Bio
February 18, 2019 - Software found to be four times better at monitoring ovarian cancer
February 18, 2019 - Male Y chromosomes not ‘genetic wastelands’
February 18, 2019 - Hormone therapy during gender transition may increase risk for cardiovascular events
February 18, 2019 - NICE renews accreditation for Advanced
Penn researchers develop first mouse model of idiopathic pulmonary fibrosis

Penn researchers develop first mouse model of idiopathic pulmonary fibrosis

image_pdfDownload PDFimage_print

The biggest hurdle to finding effective therapies for idiopathic pulmonary fibrosis (IPF) – a life-threatening condition in which the lungs become scarred and breathing is increasingly difficult – has been the inability to fully model the disease in animals, limiting the ability to observe and understand the disease. Now, a team of researchers from Penn Medicine has developed the first mouse model with an IPF-associated mutation, which induces scarring and other damage similar to what is observed in humans suffering from the condition. The findings are published this week in the Journal of Clinical Investigation.

“No one has been able to make a model to date that actually mirrors what’s going on in humans,” said senior author Michael F. Beers, MD, a professor of Pulmonary, Allergy, and Critical Care in the Perelman School of Medicine at the University of Pennsylvania, and research director of the Penn Interstitial Lung Disease Center. “Now, we have a model that resembles the pathology, physiology, and molecular signs found in patients, which will allow us to work out new pathways and targets, and test drugs in more clinically relevant ways.”

IPF, often caught in the mid to later stages, is diagnosed in about 50,000 people a year in the United States, and kills nearly 40,000 people during that same time. While there is no cure, two U.S. Food and Drug Administration-(FDA) approved drugs are used to slow the disease’s progression, and some patients receive lung transplants. The median survival rate is two to three years from the time of diagnosis.

Current IPF mouse models rely on a chemotherapy drug to induce an “inflammatory storm” in the lungs that creates lesions about 21 days later, Beers said. But that doesn’t reflect the process that actually occurs when humans develop the disease.

In the new mouse model, the team altered a gene for making a protein called surfactant protein-C (SFTPC), which is essential for lung function. Mutations in the SFTPC gene, which are found in certain human lung cells called alveolar epithelial cells (AECs), are a promising lead for homing in on one cause of the disease.

Knowing the importance of these lung AECs in the development of the disease, the team induced the SFTPC mutation into the AECs of normal mice to elicit a response. Within three days of inducing mutant SFTPC expression in adult mice, lung tissue was infiltrated by inflammatory cells; this was followed by an abnormal accumulation of inflammatory cells within tiny air sacs in the lungs. Rapid death was also observed in 30 to 50 percent of the animals. Similar to what has been observed in patients, the surviving mice went on to develop progressive fibrosis and loss of lung function.

Using the new animal model, the researchers will next look at pathways that lead to the initiation and persistence of lung fibrosis. “Now the questions become, why are those epithelial cells attracting both inflammatory cells and fibrotic cells? And how do these different cells talk to each other?” Beers said.

“We’re also taking a big data approach by profiling the genetic, proteomic, and inflammatory changes in the mice over different time points,” Beers added. “You can’t do that in humans because we see these patients once their disease has already progressed. We know very little about what happens in the beginning. This model will help answer some of those questions and hopefully lead to more effective therapeutic drugs to slow the disease.”

Source:

https://www.pennmedicine.org/news/news-releases/2018/august/first-mouse-model-to-mimic-lung-disease-could-speed-discovery-of-more-effective-treatments

Tagged with:

About author

Related Articles