Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Study uncovers mechanism that affects multiplication of dengue virus lineage

Study uncovers mechanism that affects multiplication of dengue virus lineage

A lineage of type 1 dengue virus found in Brazil is able to prevail over another even though it multiplies less in vector mosquitoes and infected human cells. This discovery was made under the scope of a Thematic Project supported by the São Paulo Research Foundation – FAPESP involving several Brazilian institutions as well as a university in the United States.

According to the study, the lineage activates a weaker immune response in the patient and is less strongly combated. As a result, the virus is able to multiply more in the organism and is more likely to be transmitted to others via infected mosquitoes, so that this lineage supersedes the other owing to its significantly greater overall capacity to multiply in mosquitoes and patients.

The researchers studied lineages 1 and 6 (L1 and L6) of type 1 dengue, which affect the population of São José do Rio Preto, São Paulo State, Brazil. Their findings showed that while L1 had a superior capacity to multiply in mosquitoes and cells, L6 was able to minimize and even deactivate the human immune response, so that this lineage ended up replacing L1.

“There were three approaches to investigating the situations in which dengue virus multiplies and to explain why one lineage supersedes another. Our research brought to light a new phenomenon that explains how a virus survives in a population,” said Maurício Lacerda Nogueira, a professor at the São José do Rio Preto Medical School (FAMERP), head of its Dermatological Disease Department’s Virology Research Laboratory, and co-author of an article that published the results of the study in PLOS Neglected Tropical Diseases . Nogueira also chairs the Brazilian Society for Virology.

“However, knowing whether the virus multiplies more or less in mosquitoes or human cells isn’t enough to understand why one lineage replaces another. We also need to know how the virus interacts with the human organism as a whole,” said Nogueira.

The study produced vital new knowledge for the production of dengue vaccines. “A global understanding of how the virus interacts with the population helps us understand how vaccines work and is fundamental to our ability to design them,” he said.

Type 1 dengue virus has been circulating in Brazil since the mid-1980s. Three lineages (L1, L3 and L6, all belonging to the same genotype) were introduced at different times. L6 was initially observed in São José do Rio Preto, where it began circulating in 2008. L1 was first identified in the city in 2010. These two lineages cocirculated for a period.

L1 was expected to display a higher capacity to multiply in cells and in the vector mosquito, Aedes aegypti, since it arrived after L6 and its viral fitness appeared to be superior to that of L6. L1 was therefore expected to replace L6 as the dominant strain, but it began to decline in 2013 and eventually disappeared.

This fact contradicted existing scientific knowledge about the prevalence of one lineage over another – a phenomenon called clade replacement (a clade is a branch of a phylogenetic tree comprising all organisms that have evolved from a common ancestor).

Clade replacement occurs if a lineage multiplies more in human cells after being introduced than another lineage that was already living in the same environment, or if a lineage that arrives later multiplies more in the mosquito. In both cases, the lineage that supersedes the other is said to have a higher level of viral fitness.

Epidemiological fitness

A third explanation arose from a 2015 study conducted in Puerto Rico, where a lineage of dengue virus was found to have a lower level of viral fitness than the lineages that were already in the environment yet eventually replaced them. Scientists discovered that this lineage inhibited the interferon system, which acts as the first line of defense against viruses in mammals (interferons are a complex of proteins that interfere with viral replication and protect cells from infection). This phenomenon is called epidemiological fitness – the capacity of a virus to become dominant in the field during epidemic outbreaks.

In the Brazilian case, none of this happened. The researchers first sequenced the genomes of the two viral lineages, which were found to have 47 different amino acids. Despite this significant genetic distance, L6 won the competition between them.

“Based on the information available at the time, it was assumed that L6 multiplied better and therefore became dominant, but when we looked at contaminated human and monkey cells, we found that L1 multiplied ten times more on average than L6,” said the coordinator for the FAPESP Thematic Project.

The next hypothesis was that L6’s higher viral fitness might be due to its higher multiplication rate in the mosquito. The researchers therefore infected captive mosquitoes (bred for use in scientific experiments) orally, having them feed by biting a membrane that contained mouse blood contaminated with dengue virus L1 and L6. “Again, L1 multiplied ten times better than L6 in the mosquito,” Nogueira said.

The researchers then investigated the possibility that the captive mosquitoes were somehow different from those found in the environment. In a new experiment, mosquito eggs were collected in the environment and hatched in the laboratory. The result was the same: L1 continued to be more efficient than L6 in terms of multiplication, although studies showed that patients infected with L6 had a far higher viral load than those infected with L1.

This evidence left the epidemiological fitness hypothesis, as had been the case in Puerto Rico, where a dengue virus that encoded interferon-inhibiting RNA had been found. Interference was not confirmed in the Brazilian case. “We then realized we were dealing with a mechanism that differed from the three known ones,” Nogueira said.

To solve the mystery, the researchers began studying the immunological aspects of the virus’s interaction with the organism. Using computational prediction systems, they found that L1 was far more likely than L6 to activate B and T lymphocytes, the main cellular components of the adaptive immune response.

Next, in studies involving mice and cells donated by people infected with the virus, the scientists succeeded in stimulating and measuring the activation of the response by B cells and T cells, observing that L6 activated a weaker response than L1. They also measured the level of cytokines present in the patients’ serum. Cytokines are signaling molecules that mediate and regulate immunity.

“Generally speaking, we observed that L1 multiplies much better but also strongly activates the immune system in both humans and mice,” Nogueira said. “In other words, L1 induces a very robust response against the virus by the organism, whereas L6 multiplies less but either inhibits the immune response or stimulates it little or not at all, so the organism takes longer to recognize the virus.”

As a result, the number of L6 viruses in the human organism is tenfold the number of L1 viruses on average, found the FAPESP-supported study. They also observed that L1 multiplies much more in the mosquito and replicates far more locally when it infects a person. This vigorous replication triggers strong activation of B and T cells, leading to an increase in cytokines, and this strong immune response inhibits systemic replication by the virus in the organism. As a result, the viral load is lower and dissemination to mosquitoes is reduced, so that fewer people will be infected by L1.

Despite the lower capacity of L6 to multiply in the mosquito and at the site of initial replication after a person is bitten, it produces only weak activation of B and T cells and stimulates the secretion of cytokines that inhibit the immune response instead of stimulating it.

“So systemic replication in people is much greater,” Nogueira said. “This means the number of viruses in the population is higher, and more mosquitoes will be infected. We therefore concluded that the epidemiological fitness of L6 is higher than that of L1, whereas the viral fitness of L1 is higher than that of L6.”

The research lasted two and a half years and involved a group of 24 scientists at several Brazilian higher education institutions in addition to FAMERP – Oswaldo Cruz Foundation, the Federal Universities of Rio de Janeiro (UFRJ) and Minas Gerais (UFMG), and São Paulo State University (UNESP) – as well as foreign collaborator Nikos Vasilakis, also a coauthor of the article and a researcher at the Center for Tropical Diseases, University of Texas Medical Branch, in Galveston (USA).

“Using epidemiological, phylogenetic, molecular and immunological analysis, the authors of the research showed that differences in the host’s immune response determine the dynamics of circulation in two lineages of dengue virus found in the city, suggesting that the factors that influence the dynamics of dengue transmission are far more complex than was previously thought,” Vasilakis said.

Source:

http://agencia.fapesp.br/mechanism-that-affects-multiplication-of-dengue-virus-lineage-is-discovered/28462/

Tagged with:

About author

Related Articles