Breaking News
January 18, 2019 - Breast cancers more likely to metastasize in young women within 10 years of giving birth
January 18, 2019 - Blood vessels can now be created perfectly in a petri dish
January 18, 2019 - Young-Onset Type 2 Diabetes Tied to Increased Hospitalization Risk
January 18, 2019 - For-profit nursing schools associated with lower performance on nurse licensure test
January 18, 2019 - Considering the culture of consent in medicine
January 18, 2019 - Researchers identify comprehensive guidelines for managing severe atopic dermatitis
January 18, 2019 - Analyzing proteins in blister fluid may classify burn severity more accurately
January 18, 2019 - Study finds higher suicide rates among youth who were Medicaid enrollees
January 18, 2019 - Opioid drugs often overprescribed to children for pain relief, say CHOP surgeons
January 18, 2019 - New biodegradable wound dressing material accelerates healing
January 18, 2019 - Life in Space May Take Toll on Spinal Muscles
January 18, 2019 - Bulldogs’ screw tails linked to human genetic disease
January 18, 2019 - Immunotherapy target identified for pediatric cancers
January 18, 2019 - Financial stress may increase heart disease risk in African Americans
January 18, 2019 - Scientists solve another piece of Ebola virus puzzle
January 18, 2019 - New project finds how endocrine disruptors interfere with thyroid functions
January 18, 2019 - Research finds decline in ketone body utilization when coronary circulation is reduced
January 18, 2019 - Let’s map our DNA and save billions each year in health costs
January 18, 2019 - AI demonstrates potential to identify irregular heart rhythms as well as humans
January 17, 2019 - Study shows link between air pollution and increased risk of sleep apnea
January 17, 2019 - Neck-strengthening exercises can protect athletes from concussions
January 17, 2019 - Computer model shows how to better control MRSA outbreaks
January 17, 2019 - Pain is unpleasant, and now scientists have identified the set of responsible neurons
January 17, 2019 - CUIMC Celebrates 2018-2019
January 17, 2019 - Study reveals potential pathway for endothelial cells to avoid apoptosis
January 17, 2019 - Hamilton Storage launches LabElite DeCapper SL to expand LabElite product family
January 17, 2019 - Location of epigenetic changes co-locate with genetic signal causing psychartric disorder
January 17, 2019 - Researchers awarded 6.1 million euros to address female fertility problems
January 17, 2019 - Counseling appointments fail to reduce weight gain during pregnancy, shows study
January 17, 2019 - Contraceptive patch that could provide 6 months of contraception within seconds
January 17, 2019 - Yeast model may pave way for development of novel therapies for metabolic disorders
January 17, 2019 - Study determines impact of antibiotic perturbation of the gut microbiome on skeletal health
January 17, 2019 - Cardiometabolic Risk Up With Tourette, Chronic Tic Disorder
January 17, 2019 - Hong Kong scientists claim ‘broad-spectrum’ antiviral breakthrough
January 17, 2019 - Researchers discover the brain cells that make pain unpleasant | News Center
January 17, 2019 - Hepatitis Is Common in New Cancer Patients
January 17, 2019 - Podcast: KHN’s ‘What The Health?’ Drug Prices Are Rising Again. Is Someone Going To Do Something About It?
January 17, 2019 - Smoking significantly increases your biological age, study shows
January 17, 2019 - B-group vitamins may be beneficial for people with first episode psychosis
January 17, 2019 - Researchers demonstrate how manganese produces parkinsonian syndrome
January 17, 2019 - Researchers suggest link between personality type and attitude towards others’ bodies
January 17, 2019 - Mutant mice administered with cocaine failed to exhibit hyperactivity, shows study
January 17, 2019 - Health Tip: Understanding a Heart Murmur
January 17, 2019 - Gut protein mutations shield against spikes in glucose
January 17, 2019 - Engineered immune cells target broad range of pediatric solid tumors in mice | News Center
January 17, 2019 - Study provides comprehensive description of associations between mental disorders
January 17, 2019 - Study finds link between high pesticide exposure and poor sense of smell among farmers
January 17, 2019 - Many cancer patients have undiagnosed hepatitis
January 17, 2019 - New study finds only 13% of outpatient antibiotic prescriptions to be appropriate
January 17, 2019 - Stem cell-based approach to diabetes offers hope for treatment
January 17, 2019 - New project receives €8.65 million from EU and Canada to ease genomic, health data sharing
January 17, 2019 - Improvements in pharmacological study to fight cognitive impairment in schizophrenia
January 17, 2019 - Study looks at trends over time in oral antibiotic prescribing by dermatologists
January 17, 2019 - Most substance use disorder treatment facilities do not offer medication treatment
January 17, 2019 - Multiple sclerosis could benefit from stem cell therapy
January 17, 2019 - Researchers manipulate T cells to improve transplant success
January 17, 2019 - Put away your rulers and reach for your phone
January 17, 2019 - Mindfulness linked with fewer menopausal symptoms
January 17, 2019 - Integrated care to women with PMADs offered at several levels
January 17, 2019 - Researchers identify MANF as a rejuvenating factor in parabiosis
January 17, 2019 - Truncal mutations study suggests new direction in origins of cancer
January 17, 2019 - Beckman Coulter launches new ClearLLab 10C System for clinical flow cytometry lab
January 17, 2019 - Effects of linoleic acid on the body are largely dependent on genes, shows study
January 17, 2019 - Pre-injury exercise reduces damage to both muscles and nerves, study finds
January 17, 2019 - Minimizing Antibody Size to Maximize Research Potential
January 17, 2019 - Research finds large genome in tiny forest defoliator
January 17, 2019 - Technology helps reduce the yearning for unhealthy food
January 17, 2019 - Imec develops prototype cardiovascular device
January 17, 2019 - New Drug Application for Insomnia Disorder Treatment Lemborexant Submitted in the United States
January 17, 2019 - What you should know about teeth whitening
January 17, 2019 - Why Older Adults Should Eat More Protein (And Not Overdo Protein Shakes)
January 17, 2019 - Colorectal cancer mortality rates predicted to increase globally
January 17, 2019 - Scientists discover mutational signatures of tumor hypoxia
January 17, 2019 - New evidence shows how fever alters immune cells
January 17, 2019 - Researchers find new class of blood pressure-regulating peptides in vampire bat venom
January 17, 2019 - Promega to exhibit new Maxwell RSC48 platform at 2019 Festival of Genomics
January 17, 2019 - Study pinpoints immune cells that could be key to tackling hypertension
January 17, 2019 - Couples Intervention May Aid Partners of Diabetes Patients
January 17, 2019 - Your weight history may predict your heart failure risk
January 17, 2019 - Explore a cornucopia of accomplishments in prematurity research
Johns Hopkins scientists successfully perform 3D personalized virtual simulations of the heart

Johns Hopkins scientists successfully perform 3D personalized virtual simulations of the heart

image_pdfDownload PDFimage_print

In a proof of concept study, scientists at Johns Hopkins report they have successfully performed 3D personalized virtual simulations of the heart to accurately identify where cardiac specialists should electrically destroy cardiac tissue to stop potentially fatal irregular and rapid heartbeats in patients with scarring in the heart. The retrospective analysis of 21 patients and prospective study of five patients with ventricular tachycardia, the researchers say, demonstrate that 3D simulation-guided procedures are worthy of expanded clinical trials.

Results of the study are described in the Sept. 3 issue of Nature Biomedical Engineering.

“Cardiac ablation, or the destruction of tissue to stop errant electrical impulses, has been somewhat successful but hampered by a lot of guesswork and variability in the way that physicians figure out which locations to zap with a catheter,” says Natalia Trayanova, Ph.D., the Murray B. Sachs Professor in the Department of Biomedical Engineering at The Johns Hopkins University Schools of Engineering and Medicine. “Our new study results suggest we can remove a lot of the guesswork, standardize treatment and decrease the variability in outcomes, so that patients remain free of arrhythmia in the long term,” she adds.

When a normal heart contracts to pump blood throughout the body, a wave of electrical signals flows through the heart, stimulating each cardiac cell to contract–one after the other–in a normal rhythm. After the heart contracts, it relaxes and refills with blood.

In people with ventricular tachycardia, the electrical signals in the heart’s lower chambers misfire and get stuck within the fist-size organ, crippling the relaxation and refilling process and producing rapid and irregular pulses–or arrhythmias–linked to an estimated 300,000 sudden cardiac deaths in the U.S. each year.

Numerous drugs are available to treat and manage so-called infarct-related ventricular tachycardia, but side effects and limitations of the drugs have increased focus on other interventions, especially the potential of cardiac ablation that essentially “rewires” the electrical signaling that gives rise to the arrhythmias. Trayanova says current estimates indicate that cardiac ablation is successful anywhere between 50 and 88 percent of the time, but outcomes are difficult to predict.

To perform a traditional ablation, doctors thread a catheter through blood vessels to reach the heart, and use radiofrequency waves to destroy regions in the heart tissue believed to sustain and propagate erratic electrical waves. Mapping of the heart’s electrical functioning with a catheter is used to locate likely problem areas, but as Trayanova notes, precise pinpointing of those tissues has been a challenge.

In a bid to locate arrhythmias more precisely, Trayanova and her research team developed 3D personalized computational models of patients’ hearts based on contrast-enhanced clinical MRI images. Each heart tissue cell in the model generates electrical signals with the aid of mathematical equations representing how heart cells behave when they are healthy, or when they are semiviable when near the scar. By poking the patient’s virtual heart with small electrical signals in different locations, the computer program then determines whether the heart develops an arrhythmia and the location of the tissue that perpetuates it. Using the model, Trayanova then simulates an ablation to that area of the heart and runs the computer program over and over to find multiple locations that doctors should ablate on the actual patient.

Among the experiments in the current study, Trayanova and her team used MRI images to create personalized heart models of 21 people who previously had successful cardiac ablation procedures for infarct-related ventricular tachycardia at The Johns Hopkins Hospital between 2006 and 2017. The 3D modeling of these patients correctly identified and predicted the locations where physicians ablated heart tissue. In five patients, the amount of ablated tissue identified by the 3D model was smaller overall–in some cases, more than 10 times smaller–than the area that was destroyed during the patients’ procedures.

Next, the research team tested the 3D simulation to guide cardiac ablation treatments for three patients with ventricular tachycardia at the University of Utah and two patients at the University of Pennsylvania. Two patients who received the simulation-guided ablation procedure have remained free of tachycardia throughout follow-up periods of 23 and 21 months. One patient who had the simulation procedure remained free of tachycardia after two months of follow up. In two patients, the virtual heart approach predicted that tachycardias would not be inducible — this was confirmed during the clinical procedure, so cardiac ablation was not performed.

With this prospective test, the research team demonstrated the feasibility of integrating a computer-simulated prediction into the clinical routine. The patient is scanned approximately 24 hours or less before the procedure. Then, the simulation is created and a prediction is made of where physicians should perform the ablation. Finally, the predicted set of ablation targets is imported into the mapping system before the patient’s procedure so that the ablation catheter is navigated directly to the predicted targets.

The study represents the first attempt to incorporate personalized simulation predictions as part of anti-arrhythmia treatment. The researchers believe that implementing these predictions will cut down the lengthy and invasive cardiac mapping process and reduce complications experienced by patients. The technology could also reduce the need for repeat procedures through its ability to make the infarcted heart incapable of creating new arrhythmias.

“It’s an exciting blend of engineering and medicine,” says Trayanova.

“One of the main challenges of catheter ablation is that we are performing procedures on very sick patients with advanced heart disease who have multiple areas in their heart that could sustain arrhythmias,” says www.hopkinsmedicine.org=””>Jonathan Chrispin, M.D., Robert E. Meyerhoff Assistant Professor of Medicine at the Johns Hopkins University School of Medicine, who will lead the clinical trials of this technology. “We are excited to begin testing Trayanova’s approach in a prospective clinical trial. We are hopeful that it can help us achieve our overarching goal of improving quality of life for patients suffering from treatment-resistant ventricular tachycardia.”=>

Trayanova says the results of a clinical trial are needed to validate the promise of personalized simulation guidance for infarct-related ablation treatments. Further clinical study planned at The Johns Hopkins Hospital was recently approved by the Food and Drug Administration under an investigational device exemption.

Source:

https://www.hopkinsmedicine.org/news/newsroom/news-releases/3d-virtual-simulation-gets-to-the-heart-of-irregular-heartbeats

Tagged with:

About author

Related Articles