Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Purifying Proteins from Mammalian Cell Culture

Purifying Proteins from Mammalian Cell Culture

Recombinant proteins can be produced using many types of cells including, yeast, bacteria, insect and mammalian cells. What advantages are there to producing recombinant proteins using mammalian cells over others?

In many cases mammalian cells are the only option to produce recombinant proteins with correct post-translational modifications, e.g. glycosylation, which are required for proper function of the therapeutic protein.

Vshivkova | Shutterstock

E. coli lack the ability to fold complex mammalian proteins and to perform correct post-translational modifications. In addition, the post-translational modifications of yeast and insect cells differ from mammalian cells. Therefore, these host organisms are often a suboptimal option for the production of mammalian proteins, especially if the glycosylation is complex or sialyation is required.

Furthermore, the ability of mammalian cells to secrete proteins into the medium simplifies the downstream process. In contrast to bacteria, mammalian cells can produce large proteins of more than 50 kDa efficiently. Bacterial systems often form inclusion bodies if larger proteins are expressed. In addition, no endotoxins are introduced into the protein sample by the expression procedure.

What are the main applications of recombinant proteins produced in mammalian cells?

Many recombinant proteins produced in mammalian cells are applied for cancer therapy. Especially antibodies and antibody like molecules, which are the most frequently produced proteins.

Membrane proteins are also very important because they are commonly used to study the effects of potential drugs and their mode of operation.

What are the challenges in producing highly pure recombinant proteins for R&D purposes

I think the major challenge is the simultaneous purification of different proteins in a short time with a standard method. Additionally, this method should need no optimization of the purification strategy for different proteins and provide high purities of more than 90%. The purification system must be cost efficient, compatible with many host expression systems and should provide a high flexibility regarding the buffer composition.

Most companies or institutes which must express many different proteins, e.g. during the screening phase of new drug candidates, are facing the same challenges every day. It is worth mentioning that a lot of these proteins are expressed at low levels, especially membrane proteins, making their purification very challenging.

Since different amounts of protein are required for different applications, the purification methods must be easily scalable and should provide a sufficient protein purification capacity.

What is the current standard method to clarify and purify these proteins in your lab? What are the advantages and limitations of this method?

Prior to the Sartoclear Dynamics® Lab method, we used centrifugation for the clarification. First, we pelleted the cells for 10 minutes at 300 g. Then we added a second centrifugation step at 3,000 to 10,000 g to remove cell debris and to prepare the sample for the Strep-Tactin®XT high capacity affinity chromatography purification.

The major drawback of this method is the time needed for the two centrifugation steps. Balancing the tubes, removal of the supernatant, the time for cleaning the centrifugation tubes and the centrifugation time itself can take up to 44 minutes.

Another bottleneck of the current method is the fact that the centrifuge must be available for clarification and since other groups in the lab are using the same machine, this is not always the case.

Finally, the centrifugation process is not very flexible with respect to the sample volume. Our centrifugation tubes must be filled up to at least 80% of the tube volume for higher centrifugation speeds. Therefore, samples below 800 ml must be distributed to several smaller tubes which requires more hands-on time.

Recently you have evaluated a new method of cell clarification and filtration from Sartorius, how does this differ from previous techniques?

The Sartoclear Dynamics® Lab filtration technique improved our clarification process remarkably. In total we were able to reduce the time needed for clarification from 44 minutes down to 12. In addition, because all Sartoclear Dynamics® Lab products are sterile single use, the risk of cross contamination was eliminated, and the filtrate was sterile.

Another aspect is the simplification of the whole process. Since we do not have to rely on a large centrifuge anymore we can conduct the clarification right away in our cell culture lab.

Finally, up and downscaling of the method is quite easy as it is only necessary to adjust the amount of filtration aid.

How were the product quality, protein yield and the IgG aggregation rate affected by using the Sartoclear clarification and filtration method when compared to centrifugation? How was this tested?

Of course, every time you change a method you must ensure that the quality of your product remains unaffected. For us as an ISO 9001 certified company this is absolutely mandatory. To test the influence of the Sartoclear Dynamics® Lab clarification process on the product quality, we clarified a MEXi-293E (HEK293) culture expressing a monoclonal antibody fused to a Twin-Strep-tag®, using our standard centrifugation process in parallel to the Sartoclear Dynamics® Lab method.

After clarification we purified the antibody from the different clarified samples via Strep-Tactin®XT high capacity gravity flow purification. The eluate was analyzed by SDS-PAGE, western blot, photometric measurement at 280 nm and size exclusion chromatography.

The SDS-PAGE and western blot analysis revealed that there was no difference in protein purity between the two clarification methods and that 100% purity was achieved with Strep-Tactin®XT high capacity purification.

The use of Sartoclear Dynamics® Lab did not influence the aggregation of the antibody, because the ratio of aggregated antibody, determined by size exclusion chromatography, was the same as for the centrifuged sample.

Finally, we found that the protein yield was the same for both methods which proved that no antibody was bound to the components of the Sartoclear Dynamics® Lab system.

In summary, the use of the Sartoclear Dynamics® Lab method had no negative effect on protein’s quality or quantity.

In your research, antibodies were labelled with the Twin-Strep-tag® for the purification step. Why do you use this affinity tag system for your purification?

The Strep-tag system allows the purification of proteins under physiological and denaturing conditions with purities usually exceeding 90%. Compared to all other affinity systems the Twin-Strep-tag® in combination with Strep-Tactin®XT reaches the highest binding affinity in pM ranges, while the system still maintains its reversibility. This is advantageous specifically for low concentrated samples in large volumes.

Due to the small size of the Strep-tag®II (8aa) and the Twin-Strep-tag® (28aa) there is no need to remove the tag.

In addition, the system is compatible with a large variety of reagents like detergents, high salt concentrations, reducing agents, chelators, etc.

These properties combined with the fact that the system is suitable for protein purification from bacterial, yeast, insect and mammalian hosts make this system the superior tag system.

It is easy to use without the need for optimization like for example adjusting the imidazole concentration for elution when using His-tag system. This makes the Strep-tag system the perfect solution for the protein purification challenges I have mentioned earlier.

In your research, samples that were centrifuged were not sterile which could be important for many applications and would require a separate sterile filtration step. How would this have been achieved and how would this have affected the procedure used?

We filtered the sample with a 0.2 µm bottle top filter if sterility is required. Of course, this leads to additional process time for clarification and additional costs.

The advantage of the Sartoclear Dynamics® Lab system is that this filtration step is already included in the clarification process.

Therefore, if sterility is required, we do not have to add this step separately.  This increases the time we save by using the Sartoclear Dynamics® Lab system compared to our standard method.

What limitations are there for the Sartoclear method of mammalian cell clarification and filtration?

In our hands, we do not see a limitation on this method. Users should check for the full recovery of their recombinant protein after clarification before using this method regularly, to be on the safe side.

Recombinant proteins have lot of potential in a wide range of applications. What advancements do you hope to see to increase their scalability and widespread use with respect to your R&D applications?

The production of recombinant proteins is still a production in a black box system. Indeed, we have learned a lot about how cells express proteins and which factors can influence protein quantity and quality.

Nevertheless, many aspects of how cells process proteins are still unclear. I think that the improvements in structure analysis, the use of CRISPR/Cas and the great advancements in the field of data analysis and data mining combined with high throughput automatization will lead to more comprehensive knowledge of these intracellular processes. This in return will lead to streamlined protein production processes.

The trend of decreasing the expression scale and increasing the throughput of proteins in an early research and development phase will drive the need for purification systems and formats that support this high throughput processes.

Where can readers find more information?

More information can be found at IBA Life Sciences, Sartorius.

About Dennis Karthaus, MSc

Dennis Karthaus received his master`s degree in biotechnology from the University of Applied Sciences in Bremerhaven. During his thesis at the department of Pharmaceutical Biotechnology at the Fraunhofer Institute for Toxicology and Experimental Medicine he worked on the development of protein purification platforms and in cell line development.

In 2012, Dennis Karthaus joined IBA Lifesciences. He is responsible for the mammalian custom protein expression & purification service and the product development in this field.

Tagged with:

About author

Related Articles