Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Low levels of cellular copper may make fat cells fatter

Low levels of cellular copper may make fat cells fatter

In studies of mouse cells, Johns Hopkins researchers have found that low levels of cellular copper appear to make fat cells fatter by altering how cells process their main metabolic fuels, such as fat and sugar.

The discovery, they say, adds to evidence that copper homeostasis could one day be a therapeutic target for metabolic disorders, including obesity. The researchers caution that although links between copper and obesity in humans have been reported, more work needs to be done to better understand the connection. In the western world, dietary copper deficiency is not common, except in pregnancy, and the main health risks are associated with genetic disorders of copper misbalance. A diet incorporating vegetables, nuts and even chocolate usually contains enough copper to maintain healthy copper levels.

Copper is essential to human biology and helps to facilitate many processes, from the formation of pigments in hair and eye color to new blood vessels. The mineral is also important to cognition. Copper imbalances have been associated with several neurological disorders, and altered copper levels were linked to depression and changes in sleep pattern, according to

“We have seen over and over again that when there is a copper misbalance in a tissue, there are significant effects on its health,” says Lutsenko.

The study, described in the Sept. 17 edition of the journal PLOS Biology, summarizes the research team’s efforts to describe the role of copper balance in the physiology of fat-storing cells, called adipocytes. Haojun Yang, lead author on the paper and a graduate student in cellular and molecular physiology at the Johns Hopkins University School of Medicine, tackled this question as part of her Ph.D. study.

The researchers wanted to understand how adipocytes used copper. They did this by first growing mouse fat cell precursors in the laboratory that could be chemically signaled to grow into mature adipocytes — the kind used to store fuel.

The researchers monitored the cells’ copper uptake and the proteins they produced during this developmental process.

Lutsenko and her team found that during maturation, adipocytes ingested twice the amount of copper as the precursors. They also found that several copper-containing proteins were more abundant, especially an enzyme called semicarbazide-sensitive amine oxidase (SSAO), which was extraordinarily “upregulated,” appearing at levels up to 70 times higher than in the precursor cells. Past studies have shown that SSAO is copper-dependent, and is uniquely abundant in adipose tissue, but it remained unclear how cellular copper levels affect SSAO and how SSAO activity is linked to adipocyte metabolism, Lutsenko says. “We were intrigued to see that these components correlated,” Yang says.

To test whether the cells’ copper consumption affected SSAO’s function, Yang limited copper availability during adipocyte maturation. She found that the lack of copper did not keep the cells from developing into mature fat cells, but, unexpectedly, the copper-deprived cells grew to more than twice the size of their healthy counterparts and contained more fatty molecules, called lipids, than cells developing under copper-adequate conditions.

“This test showed that copper was important to healthy development and metabolism of adipocytes,” says Lutsenko.

To determine whether loss of the copper-dependent SSAO activity was responsible for the change in size and fat accumulation by the copper-deprived cells, Yang engineered cells that lacked the enzyme entirely using genetic editing and monitored their development. When chemically induced to become mature fat cells, these lab-grown mouse cells looked remarkably similar to cells deprived of copper in the earlier experiments — they grew to about twice the size of normal cells and contained more lipid.

This result affirmed that cellular copper levels were essential to SSAO function and that inactivating this enzyme caused fat cells to grow abnormally, the researchers said.

What still remained unclear, however, was how these cells accumulated that much lipid.

“In normal cells, the intake of the two cellular fuels, lipid and sugar, are balanced,” says Yang. “It appeared that something about copper deficiency shifted that balance toward fat accumulation.”

The researchers knew from previous studies that SSAO had insulinlike effects, causing the cells to consume more sugars. They hypothesized that hindering the enzyme’s function may force the cells to switch fuel sources.

To test this hypothesis, the researchers compared the protein profiles of three lines of cells: normal fat cells, cells without SSAO, and cells with SSAO genetically removed and then “rescued” by adding the protein back in. They looked for differences in protein expression and sugar or lipid intake as these cells matured. Yang repeated her earlier experiments with these cells, inducing them to develop into mature fat cells and analyzing their protein composition three, six and nine days after induction.

Overall, she identified 7,000 proteins that were present in all three cell types. By narrowing down these results to those proteins affected by the presence of functional SSAO, Yang found changes in abundance of approximately 200 proteins that all fell within 17 cellular pathways that regulated metabolism. Most significant changes were observed for proteins that absorbed and processed sugar, which were less abundant, and proteins that facilitated uptake and processing of lipids that were more abundant in cells lacking SSAO.

“This showed that SSAO is vital to many metabolic functions, including the switch between absorbing sugars to absorbing fats,” Yang says.

The researchers report they are now planning studies to monitor SSAO in the bloodstream of humans with fatty liver disease and diabetes, because SSAO appears in elevated levels in the blood of such individuals. “We suspect that SSAO may help regulate fuel selection in other tissues,” says Yang.

Source:

https://www.hopkinsmedicine.org/news/newsroom/news-releases/low-copper-levels-linked-to-fatter-fat-cells

Tagged with:

About author

Related Articles