Breaking News
January 16, 2019 - Persistent Opioid Use High in Head, Neck Cancer Patients
January 16, 2019 - Questions to ask your doctor about post pregnancy care: MedlinePlus Medical Encyclopedia
January 16, 2019 - Neurons with good housekeeping are protected from Alzheimer’s
January 16, 2019 - Is mindfulness worthy of all the hype?
January 16, 2019 - Physical Activity, Any Type or Amount, Cuts Health Risk from Sitting
January 16, 2019 - New understanding in the evolution of human feet
January 15, 2019 - AHA: New Cholesterol Guidelines Put Ethnicity in the Spotlight
January 15, 2019 - Different brain areas linked to smoking and drinking
January 15, 2019 - Henry Marsh shares insights into neurosurgery and more at Dean’s Lecture Series
January 15, 2019 - Want to Live Longer? For Just 30 Minutes a Day, Do Anything Else But Sit
January 15, 2019 - The Current issue of “The view from here” is concerned with Targets
January 15, 2019 - Plain packaging sparked tobacco price rises, new study finds
January 15, 2019 - Sedentary lifestyles can be unhealthy, physical activity can lower risk
January 15, 2019 - Gut microbiome may help prevent development of cow’s milk allergy
January 15, 2019 - Lesbian, gay and bisexual individuals more likely to suffer severe substance use disorders
January 15, 2019 - New England Journal of Medicine Publishes Positive Results of the Pivotal Trial of Cablivi (caplacizumab) for Rare Blood Clotting Disorder
January 15, 2019 - Levels of inflammatory marker (CRP) linked to housing type and tenure
January 15, 2019 - Three gifts I’m glad I gave myself in 2018
January 15, 2019 - Columbia’s Pediatrics Department Names New Vice Chairs, Expands Leadership
January 15, 2019 - US FDA Accepts Regulatory Submissions for Review of Tafamidis to Treat Transthyretin Amyloid Cardiomyopathy
January 15, 2019 - Staying fit can cut your risk of heart attack by half
January 15, 2019 - Vitamin D supplements are of no gain to those over 70, study shows
January 15, 2019 - Scientists create comprehensive new method to predict breast cancer risk
January 15, 2019 - Research shows connection between social media use and impaired risky decision-making
January 15, 2019 - FDA Approves Expanded Use of Adacel (Tdap) Vaccine for Repeat Vaccination
January 15, 2019 - Treating spinal pain with replacement discs made of ‘engineered living tissue’ moves closer to reality
January 15, 2019 - Providers Walk ‘Fine Line’ Between Informing And Scaring Immigrant Patients
January 15, 2019 - Outcomes Poorer for Medicaid Beneficiaries With STEMI
January 15, 2019 - Decorative Products on Foods Can Be Unsafe
January 15, 2019 - A dream of sustainable surgery in Uganda
January 15, 2019 - Study shows how herpes viruses and tumors have learned to manipulate the same ancient RNA
January 15, 2019 - Common Heart, Diabetes Meds May Help Ease Mental Illness
January 15, 2019 - Stress and trauma in earliest years linked to reduced hippocampal volume in adolescence
January 15, 2019 - Scientists identify endogenous activator of sigma-1 receptors in human cells
January 15, 2019 - MAR treatments unlikely to be cause of premature or low birth weight babies
January 15, 2019 - Parental CPTSD increases transmission of trauma to offspring of Tutsi genocide survivors
January 15, 2019 - High-fat diets shown to increase blood pressure
January 15, 2019 - New institute for food safety to be established in Netherlands
January 15, 2019 - Keele University researchers receive £2.4 million grant to help reduce overprescribing of opioids
January 15, 2019 - Synthetic compound reverses mutant p53 aggregate accumulation, study shows
January 15, 2019 - First elder care robot tested in a WSU smart home apartment
January 15, 2019 - Oxford researchers explore relationship between technology use and adolescent mental health
January 15, 2019 - From microbiome research to healthier and sustainable foods
January 15, 2019 - How coaching moms and dads improves infants’ language skills
January 15, 2019 - Precision health approach tapped to identify causes of poverty
January 14, 2019 - DNA origami can accurately measure how antibodies interact with several antigens
January 14, 2019 - Researchers identify multiple new subtypes of most common childhood cancer
January 14, 2019 - Total Fertility Rates Vary by State
January 14, 2019 - Elevated blood lead level in early childhood associated with increased risk of academic problems in school-aged children
January 14, 2019 - Superior technique identified that can block CRISPR gene editing
January 14, 2019 - Turning breast cancer cells into fat cells prevents the formation of metastases
January 14, 2019 - Review examines what influences HIV-positive patients to stay on antiretroviral drugs in Africa
January 14, 2019 - Identifying genetic factors that lead to squamous cell carcinoma
January 14, 2019 - Virtual video visits can replace office visits without compromising quality of care
January 14, 2019 - Health Highlights: Jan. 10, 2019
January 14, 2019 - Molecular hallmarks of tumor hypoxia across 19 cancer types discovered
January 14, 2019 - Scientists uncover how protein clumps damage cells in Parkinson’s
January 14, 2019 - Physician-scientist’s “indomitable spirit” prevails over personal adversity
January 14, 2019 - King’s researchers receive £1.25 million to investigate fatal eating disorder
January 14, 2019 - UCR researchers uncover how plants sense temperature
January 14, 2019 - Scientists find link between colitis and colon cancer
January 14, 2019 - New skin patch provides long-acting contraceptive protection
January 14, 2019 - Asparagine synthetase deficiency – Genetics Home Reference
January 14, 2019 - Improved stem cell approach could aid fight against Parkinson’s
January 14, 2019 - New class of sleeping pill preserves ability to wake in response to danger signals
January 14, 2019 - Cancer patients are four times more likely to commit suicide
January 14, 2019 - The human brain works in reverse order to retrieve memories
January 14, 2019 - Simple tips can lead to better food choices
January 14, 2019 - Meth’s Resurgence Spotlights Lack Of Meds To Combat The Addiction
January 14, 2019 - TARA Biosystems and Insilico Medicine collaborate to discover novel therapies for cardiac disease
January 14, 2019 - Early life stress in mice affects their offspring behavior
January 14, 2019 - Depression Tied to Worse Asthma Outcomes in Urban Teens
January 14, 2019 - Santa calorie counting
January 14, 2019 - Opiod prescriptions for pet dogs misused by their masters
January 14, 2019 - People with ASD could be better at recognizing regret and relief in others finds study
January 14, 2019 - Conducting ChIP-Seq with Low Cell Numbers
January 14, 2019 - Study explores support and social networks of family carers of people with dementia
January 14, 2019 - At Risk for an Opioid OD? There’s an App for That
January 14, 2019 - Single national electronic health record will help improve care in Canadian hospitals
January 14, 2019 - Study unearths Britain’s first speech therapists
Researchers modify CRISPR to reorganize genome | News Center

Researchers modify CRISPR to reorganize genome | News Center

image_pdfDownload PDFimage_print

Researchers at Stanford University have reworked CRISPR-Cas9 gene-editing technology to manipulate the genome in three-dimensional space, allowing them to ferry genetic snippets to different locations in a cell’s nucleus. 

The new technique, dubbed CRISPR-genome organization or simply CRISPR-GO, uses a modified CRISPR protein to reorganize the genome in three dimensions. If CRISPR is like molecular scissors, then CRISPR-GO is like molecular tweezers, grabbing specific bits of the genome and plunking them down in new locations of the nucleus. But it’s more than just physical relocation: Displacing genetic elements can change how they function.

The research sheds new light on how the genome’s spatial organization in the nucleus governs the function of the cell overall.

“The question of why spatial organization in a cell matters is an important one, and it’s also not one that scientists agree on,” said Stanley Qi, PhD, assistant professor of bioengineering and of chemical and systems biology. “CRISPR-GO could provide an opportunity to answer that question by enabling us to target, move and relocate very specific stretches of DNA, and see how their new placements in the nucleus change how they function.”

Most mammalian cells contain a nucleus that houses more than 6 feet of DNA, if stretched out in a line. This genetic material determines the fate of the cells and, if out of place or damaged, can lead to disease. Previous studies have shown that DNA tends to clump in certain areas in the nucleus. How that placement affects the DNA’s function, however, is still unclear.

In the proof-of-principle study, Qi investigated three distinct subregions of the nucleus using CRISPR-GO, testing an overarching hypothesis: Do genes and other genetic elements behave differently in different zones of the nucleus?

So far, their data show that specific compartments and some free-floating bodies of proteins in the nucleus can sway the function of repositioned DNA. Depending on where the genetic materials are located, some nuclear regions repress gene expression and some accelerate telomere growth, and subsequently cell division. One protein body may even hold the power to suppress tumor formation.

A study detailing this research was published online Oct. 11 in Cell. Qi is the senior author. Postdoctoral scholar Haifeng Wang, PhD, is the lead author.

Bridging the gap

Demystifying the physical details of the genome has proved to be a tedious task, but there are some existing technologies that allow scientists to peer into cells and see how their guts are physically organized. What’s been missing is a way to tamper with this organization. CRISPR-GO is the first to offer researchers a means to do so.

By decommissioning the “cutting” mechanism of CRISPR-Cas9, the editing tool becomes more of a delivery system, which Qi used to deliver small stretches of DNA via a programmable guide RNA to a new location in the nucleus.>

There are three essential parts of CRISPR-GO. First, there’s what Qi calls the “address” of the genetic target that you want to relocate — a stretch of DNA that’s targeted with a complementary strand of binding RNA. Then, you need the destination’s address — the specific portion of DNA in a nuclear compartment to which you want to move the chromatin. Finally, there’s the “bridge,” which, in this case, is a catalyst that sparks the congealing of the target DNA to its new home in the nucleus. 

“Kids often like to build little railroads to help trains get from one station to another,” said Qi. “It’s not so different from what we’re doing here.”

Different room, different function

Qi describes the functionalities of the nuclear compartments like the spaces of a house. In every room of your home, you do different things — in the kitchen, you cook; in the bedroom, you sleep. In the nucleus of a cell, the same concept applies. There are multiple compartments in the nucleus that all have specific roles in upholding cell functionality overall. Qi and his lab investigated three distinct areas of the nucleus, testing whether they could somehow shift the function of chromatin depending on where they moved it.

Tagged with:

About author

Related Articles