Breaking News
January 19, 2019 - Newly identified subset of immune cells may be key to fighting chronic inflammation
January 19, 2019 - New immune response regulators discovered
January 18, 2019 - Poor blood oxygenation during sleep predicts chance of heart-related death
January 18, 2019 - First international consensus on the diagnosis and management of fibromuscular dysplasia
January 18, 2019 - Rapid resistance gene sequencing technology can hasten identification of antibiotic-resistant bacteria
January 18, 2019 - Researchers develop artificial enzymatic pathway for synthesizing isoprenoids in E. coli
January 18, 2019 - Scientists advise caution in immunotherapy research
January 18, 2019 - How children across the world develop language
January 18, 2019 - Columbia Medical Student Receives McDonogh Scholarship
January 18, 2019 - Secretive ‘Rebate Trap’ Keeps Generic Drugs For Diabetes And Other Ills Out Of Reach
January 18, 2019 - Plant based diet could be the best option for the planet says commission
January 18, 2019 - New conservation practice could reduce nitrogen from agricultural drainage, study shows
January 18, 2019 - UIC researchers receive $1.7 million NCI grant to study Southeast Asian fruit
January 18, 2019 - New study determines the fate of DNA derived from genetically modified food
January 18, 2019 - Scientists develop new gene therapy that prevents axon destruction in mice
January 18, 2019 - Study finds critically low HPV vaccination rates among younger adolescents in the U.S.
January 18, 2019 - Brain cells involved in memory play key role in reducing future eating behavior
January 18, 2019 - Risk for Conversion of MS Varies With Different Therapies
January 18, 2019 - Investigational cream may help patients with inflammatory skin disease
January 18, 2019 - Medical school news office receives six writing awards | News Center
January 18, 2019 - County By County, Researchers Link Opioid Deaths To Drugmakers’ Marketing
January 18, 2019 - Research reveals risk for developing more than one mental health disorder
January 18, 2019 - Scientists discover a dramatic pattern of bone growth in female mice
January 18, 2019 - Study finds link between lengthy periods of undisturbed maternal sleep and stillbirths
January 18, 2019 - New nuclear medicine method could improve detection of primary and metastatic melanoma
January 18, 2019 - Combination therapy shows high efficacy in treating people with leishmaniasis and HIV
January 18, 2019 - Health Tip: Don’t Ignore Changes in Skin Color
January 18, 2019 - Dietary Recommendations for Healthy Children
January 18, 2019 - Eliminating the latent reservoir of HIV
January 18, 2019 - Pain From The Government Shutdown Spreads. This Time It’s Food Stamps
January 18, 2019 - Newly discovered regulatory mechanism helps control fat metabolism
January 18, 2019 - New rapid blood tests could speed up TB diagnosis, save the NHS money
January 18, 2019 - Researchers develop intelligent system for ‘tuning’ powered prosthetic knees
January 18, 2019 - Monoclonal antibody pembrolizumab prolongs survival in patients with squamous cell carcinoma
January 18, 2019 - New research detects mosquito known to transmit malaria for the first time in Ethiopia
January 18, 2019 - Lumex Instruments’ RA-915AM monitor installed at Hg treatment plant in Almadén, Spain
January 18, 2019 - ACCC survey finds multiple threats to growth of cancer programs
January 18, 2019 - Meeting the challenge of engaging men in HIV prevention and treatment
January 18, 2019 - Furloughed Feds’ Health Coverage Intact, But Shutdown Still Complicates Things
January 18, 2019 - Experts discuss various aspects on health risks posed by fumigated containers
January 18, 2019 - Researchers use gene-editing tool CRISPR/Cas9 to limit impact of parasitic diseases
January 18, 2019 - Alpha neurofeedback training could be a means of enhancing learning success
January 18, 2019 - Innovative ‘light’ method demonstrates positive results in fight against malignant tumors
January 18, 2019 - The cytoskeleton of neurons found to play role in Alzheimer’s disease
January 18, 2019 - New resource-based approach to improve HIV care in low- and middle-income countries
January 18, 2019 - Bedfont appoints Dr Jafar Jafari as first member of the Gastrolyzer Medical Advisory Board
January 18, 2019 - New study shows link between secondhand smoke and cardiac arrhythmia
January 18, 2019 - DZIF scientists reveal problems with available diagnostics for Zika and chikungunya virus
January 18, 2019 - Breast cancers more likely to metastasize in young women within 10 years of giving birth
January 18, 2019 - Over 5.6 million Americans exposed to high nitrate levels in drinking water
January 18, 2019 - Blood vessels can now be created perfectly in a petri dish
January 18, 2019 - Study identifies prominent socioeconomic and racial disparities in health behavior in Indiana
January 18, 2019 - Young-Onset Type 2 Diabetes Tied to Increased Hospitalization Risk
January 18, 2019 - For-profit nursing schools associated with lower performance on nurse licensure test
January 18, 2019 - Considering the culture of consent in medicine
January 18, 2019 - Researchers identify comprehensive guidelines for managing severe atopic dermatitis
January 18, 2019 - Analyzing proteins in blister fluid may classify burn severity more accurately
January 18, 2019 - Study finds higher suicide rates among youth who were Medicaid enrollees
January 18, 2019 - Opioid drugs often overprescribed to children for pain relief, say CHOP surgeons
January 18, 2019 - New biodegradable wound dressing material accelerates healing
January 18, 2019 - Life in Space May Take Toll on Spinal Muscles
January 18, 2019 - Bulldogs’ screw tails linked to human genetic disease
January 18, 2019 - Immunotherapy target identified for pediatric cancers
January 18, 2019 - Financial stress may increase heart disease risk in African Americans
January 18, 2019 - Scientists solve another piece of Ebola virus puzzle
January 18, 2019 - New project finds how endocrine disruptors interfere with thyroid functions
January 18, 2019 - Research finds decline in ketone body utilization when coronary circulation is reduced
January 18, 2019 - Let’s map our DNA and save billions each year in health costs
January 18, 2019 - AI demonstrates potential to identify irregular heart rhythms as well as humans
January 17, 2019 - Study shows link between air pollution and increased risk of sleep apnea
January 17, 2019 - Neck-strengthening exercises can protect athletes from concussions
January 17, 2019 - Computer model shows how to better control MRSA outbreaks
January 17, 2019 - Pain is unpleasant, and now scientists have identified the set of responsible neurons
January 17, 2019 - CUIMC Celebrates 2018-2019
January 17, 2019 - Study reveals potential pathway for endothelial cells to avoid apoptosis
January 17, 2019 - Hamilton Storage launches LabElite DeCapper SL to expand LabElite product family
January 17, 2019 - Location of epigenetic changes co-locate with genetic signal causing psychartric disorder
January 17, 2019 - Researchers awarded 6.1 million euros to address female fertility problems
January 17, 2019 - Counseling appointments fail to reduce weight gain during pregnancy, shows study
January 17, 2019 - Contraceptive patch that could provide 6 months of contraception within seconds
Down syndrome may hold important clues to onset of Alzheimer’s disease

Down syndrome may hold important clues to onset of Alzheimer’s disease

image_pdfDownload PDFimage_print

At first glance, Down syndrome (DS) and Alzheimer’s disease (AD), two severe brain abnormalities, may seem to have little in common. Down syndrome is a hereditary disease, the source of which has long been recognized–a triplication of chromosome 21. By contrast, the overwhelming majority of Alzheimer’s cases (over 95 percent), do not have a clear-cut genetic source. Instead, the disease, which usually becomes clinically apparent late in life, is caused by a perplexing constellation of factors. While these have been the focus of intense study for over 100 years, few conclusive answers have come to light.

In new research, Antonella Caccamo and her colleagues explore a number of critical factors that appear to link the two illnesses. The current project will use DS as a window into the underlying mechanisms that may give rise to Alzheimer’s pathology. Using this complementary approach, her $3.1 million NIH grant will explore the effects of a critical protein complex known as mTOR.

In the healthy brain, mTOR is involved in a range of essential physiological processes. mTOR is a regulator of protein synthesis and degradation. It plays a critical role in cell growth, longevity and the formation of the cytoskeleton, which provides living cells with their shape and structure, and mTOR is vital to maintaining the proper energy balance in many tissues throughout the body. mTOR is also implicated in synaptic plasticity, neuronal recovery and the retention of memory.

Caccamo is a researcher in the ASU-Banner Neurodegenerative Disease Research Center. Much of her research focuses on investigating Down syndrome molecular alterations in the brain in order to shed new light on Alzheimer’s disease.

“The ultimate goal of my research is to identify novel and clinically translatable targets, thus aiding in the development of new treatments for AD,” Caccamo says.

Learning from mTOR

Disruption of the mTOR pathway has been implicated in diseases including cancer, obesity and cardiovascular disease. Dysregulation of mTOR also plays an important role in diabetes and aging, two known risk factors for Alzheimer’s disease. Irregularities in mTOR functioning are linked to other neurodegenerative diseases and have been shown to give rise to two distinct neuropathologies: depositions in the brain of plaques composed of the protein amyloid beta (Aβ), and accumulations of another protein– known as tau–which aggregates within neuronal cell bodies, forming neurofibrillary tangles.

Plaques and tangles are the classic hallmarks of Alzheimer’s disease. Intriguingly, they also occur in the brains of virtually all patients with Down syndrome, some 60 percent of whom go on to develop Alzheimer’s disease by age 60. Interestingly, APP (amyloid precursor protein), a protein that when cleaved generates beta amyloid (Aβ), the toxic protein that accumulates in AD and DS brains, is located on chromosome 21, the same chromosome that is triplicated in Down syndrome.

Could disruption of the vital mTOR pathway offer clues to the development of plaques and tangles and the onset of dementia in both DS and AD patients? Is mTOR dysregulation also linked with a particular form of cell death known as necroptosis, likewise implicated in AD and DS pathology? Most importantly, can the investigation of the molecular drivers of AD pathology in DS patients provide a new window into the early mechanisms underlying the development of sporadic Alzheimer’s, the form of the disease that commonly strikes aging adults? These are some of the important questions Caccamo’s new study intends to address.

Relentless scourge

Alzheimer’s disease remains the only leading killer lacking any means of treatment, prevention or cure. The disease is pitiless in its systematic destruction of brain functioning, wiping memories clean and robbing the brain of its essential capacities, ultimately resulting in death–typically within 8-10 years of clinical diagnosis, though in some cases, Alzheimer’s can drag on for as long as 20 years. The emotional toll on patients, caregivers and society is immense and rapidly mounting.

Additionally, the staggering economic burden currently figures in the hundreds of billions of dollars in the US alone and is projected to top $1 trillion by 2050. The need for viable treatments and preventive strategies could not be more acute.

Today, researchers know that the onset of Alzheimer’s begins decades before its telltale signs become apparent. Some have gone so far as to say that while AD is usually thought of as a disease of old age, it may also be associated with adolescence when the early signposts of the disease are planted in the seemingly healthy brain. Many in the field believe that the best hope for arresting the ominous trajectory of the disease lies in identifying causal mechanisms at the earliest stage, and developing effective means of intervention before the brain is irreparably damaged.

Caccamo believes that mTOR dysregulation may be one such early mechanism, giving rise to AD pathology in aging adults as well as DS patients. Research has demonstrated that mTOR is hyperactive in specific brain regions in both AD and DS patients. mTOR hyperactivity is further associated with tau pathology as well as low levels of TSC2, a critical gene product that is believed to keep mTOR hyperactivity in check. Finally, preliminary data from Caccamo’s research indicates that cell loss in DS patients results in part from necroptosis, a unique form of cell suicide linked with dysregulation of mTOR.

This combination of factors has led to the central hypothesis of the new study: Dysfunction of the TSC2 complex causes an increase in mTOR activity in DS, leading to AD-like neurodegeneration by inducing necroptosis.

Streams and tributaries of Alzheimer’s pathology

Caccamo’s new project, entitled “Identify common mechanisms of neurodegeneration between Alzheimer’s disease and Down syndrome,” addresses these issues on several fronts. The first aim of the project is to identify the molecular mechanisms underlying mTOR hyperactivity in DS. Here, the association of dysfunctional TSC2 with mTOR hyperactivity is explored. What might be causing the downregulation of TSC2 leading to mTOR hyperactivity? Three possibilities are experimentally probed: the presence of epigenetic changes in TSC2 and mTOR, alteration of the turnover rate of the TSC2 protein and newly detected proteins that may likewise contribute to destabilizing the delicate TSC2/mTOR axis.

The second aim of the study is to determine the role of hyperactive mTOR in the development of AD-like phenomena in DS. Here, the hypothesis of hyperactive mTOR leading to AD pathologies, particularly Aβ plaques and neurofibrillary tangles, is explored using Ts65Dn mice, a genetic model of Down syndrome. Caccamo’s preliminary results show that mTOR hyperactivity precedes an increase in Aβ and tau levels and degeneration of cholinergic neurons in mice. By subtly increasing or decreasing mTOR signaling, the study will test the effects of reducing mTOR on Aβ and tau levels as well as degeneration of neurons in the mice. Further, increased mTOR levels will be examined to see if such changes increase AD-like pathology and cognitive deficits. Finally, the study will identify additional proteins falling under the regulation of hyperactive mTOR in DS.

Although the death of nerve cells in both Alzheimer’s and DS brains is a well-recognized occurrence associated with impaired cognitive ability, the mechanisms leading to cell death are still not well understood. The third aim of the new study will be to examine how mTOR hyperactivity contributes to neuronal loss. Earlier work by Caccamo and others suggests that a form of programmed cell death known as necroptosis contributes to the neurodegeneration typically observed in AD brains.

The third phase of the new study will investigate the hypothesis that hyperactive mTOR helps set this neurodegeneration process in motion by activating necroptosis pathways in the brain. Systematically modulating mTOR activity and necroptosis signaling in mouse neurons will be used to test this hypothesis. In addition to improving the understanding of the mechanisms leading to cell death in DS and AD, the research will help elucidate possible therapeutic targets for these two tragic afflictions.

Researchers have much to learn from in-depth studies like these, which delve into mTOR’s profound influence on the brain, in sickness and in health. In addition to its relevance in neurodegenerative disease, mTOR’s crucial role in the aging process may shed new light on other foundational issues in neuroscience.

Source:

https://biodesign.asu.edu/news/fight-against-alzheimer%E2%80%99s-down-syndrome-may-hold-vital-clues

Tagged with:

About author

Related Articles