Breaking News
April 24, 2019 - Making Laboratories More Efficient with the Most Modern LIMS on the Market
April 24, 2019 - Treating cancer patients with personalized, combination therapies improves outcomes
April 24, 2019 - Researchers engineer new molecules to help stop lung cancer
April 24, 2019 - Acupuncture can be a wonderful tool for preventing number of diseases
April 24, 2019 - Daily life disability before hip replacement may predict poor post-operative outcomes
April 24, 2019 - Study finds involuntary staying in housing estates to be a potential health risk
April 24, 2019 - Older kidney disease patients starting dialysis die at higher rates than previously thought
April 24, 2019 - Time-restricted eating shows promise for controlling blood glucose levels
April 24, 2019 - Research provides important insight on the brain-body connection
April 24, 2019 - In 10 Years, Half Of Middle-Income Elders Won’t Be Able To Afford Housing, Medical Care
April 24, 2019 - Researchers study how E. coli clones have become major cause of drug-resistant infections
April 24, 2019 - Bacterial and fungal toxins found in popular electronic cigarettes
April 24, 2019 - Texting helps improve medication adherence, health outcomes for patients with schizophrenia
April 24, 2019 - Cochrane Review looks at different ways to use nicotine replacement therapies
April 24, 2019 - New review on relationship between COPD and Type 2 diabetes
April 24, 2019 - Brain areas linked to memory and emotion aid odor navigation in humans
April 24, 2019 - Brain stimulation reverses age-related memory loss
April 24, 2019 - Amid Opioid Prescriber Crackdown, Health Officials Reach Out To Pain Patients
April 24, 2019 - $4 million NIH award will help establish UCI Skin Biology Resource-based Center
April 24, 2019 - Cancer drugs reprogram genes in breast tumors to prevent endocrine resistance, finds study
April 24, 2019 - Combination-imaging technique provides new window into macaque brain connections
April 24, 2019 - Researchers identify new allergen responsible for allergy to durum wheat
April 24, 2019 - Researchers define role of rare, influential cells in the bone marrow
April 24, 2019 - DNA rearrangement may predict poor outcomes in multiple myeloma
April 24, 2019 - FDA Approves Skyrizi (risankizumab-rzaa) for Moderate to Severe Plaque Psoriasis
April 24, 2019 - Combination therapy might be beneficial in schizophrenia
April 24, 2019 - Blood test can help match cancer patients to early phase clinical trials
April 24, 2019 - Women tend to underreport snoring and underestimate its loudness
April 24, 2019 - Comprehensive molecular test introduced for diagnosis of malaria caused by P. vivax parasites
April 24, 2019 - New range prediction approach increases accuracy, safety and tolerability of proton therapy
April 24, 2019 - Need for Sedation Up for Regular Cannabis Users
April 24, 2019 - Lack of access to antibiotics is a major global health challenge
April 24, 2019 - New study provides better understanding on safety of deworming programs
April 24, 2019 - EEG used to detect impact of maternal stress on neurodevelopment in 2-month-old infants
April 24, 2019 - FDA Approves First Generic Naloxone Nasal Spray Against Opioid Overdose
April 24, 2019 - A new way of finding compounds that prevent aging
April 24, 2019 - Mechanical training makes synthetic hydrogels perform more like muscle
April 24, 2019 - Study provides new insights into regulatory T cells’ role in protecting against autoimmune disease
April 24, 2019 - Pregnant women with type 1 diabetes are at greater risk of preterm birth
April 24, 2019 - ‘Tummy tuck’ can be safely performed in obese patients with no increase in complications
April 23, 2019 - ‘First’ 3-D print of heart with human tissue, vessels unveiled
April 23, 2019 - Which blood-based method works best to detect TB?
April 23, 2019 - Gene therapy cures infants suffering from ‘bubble boy’ immune disease
April 23, 2019 - Chemical-sampling wristbands detect similar exposures across three continents
April 23, 2019 - Management of Residual Limb Pain
April 23, 2019 - Molecular clock influences immune cell responses
April 23, 2019 - On the importance of culture, partnerships and diversity at the Dean’s Lecture Series
April 23, 2019 - Siddhartha Mukherjee Receives Lewis Thomas Prize for Writing About Science
April 23, 2019 - Dengue mosquito poses greatest danger of spreading Zika virus in Australia
April 23, 2019 - Scientists identify 104 high-risk genes for schizophrenia
April 23, 2019 - Abdominal etching can help patients to get classic ‘six-pack abs’ physique
April 23, 2019 - Alvogen Inc. Issues Voluntary Nationwide Recall of Fentanyl Transdermal System Due to Product Mislabeling
April 23, 2019 - Skype hypnotherapy is effective treatment for IBS
April 23, 2019 - The future hope of “flash” radiation cancer therapy
April 23, 2019 - Bicycling, Recycling, and Beyond: Public Safety to Host Shred Fest and Bike-to-Campus Day 
April 23, 2019 - Skipping breakfast linked with increased risk of death from heart disease
April 23, 2019 - Neuroscientists propose new theory about amyloid precursor protein connection in Alzheimer’s
April 23, 2019 - Mediterranean diet protects against overeating and obesity
April 23, 2019 - NUS scientists uncover novel biomarkers linked with ‘chemobrain’
April 23, 2019 - Novel ECCITE-seq technique expands multimodal single cell analysis
April 23, 2019 - Half of all American workplaces offer health and wellness programs
April 23, 2019 - Hypnosis may offer a genuine alternative to painkillers
April 23, 2019 - Sleep loss greatly interferes with job performance
April 23, 2019 - Study shows how elderberry fruit can help fight against influenza
April 23, 2019 - Parkinson’s sufferers regain mobility with new implant
April 23, 2019 - Perinatal Complications Tied to Childhood Social Anxiety
April 23, 2019 - Research reveals how immune cells help tumors escape body’s defenses
April 23, 2019 - UAB receives $17 million grant to explore immune cells in inaccessible tissues of the human body
April 23, 2019 - Opening blocked arteries may be lifesaver for older heart attack patients
April 23, 2019 - Yposkesi chairman to speak on ‘Manufacturing and the CDMO Perspective’ at Cell and Gene Meeting
April 23, 2019 - Listeria Outbreak Linked to Deli Meats, Cheeses in 4 States
April 23, 2019 - Scientists find another way HIV can hide from vaccines
April 23, 2019 - Improved WIC food packages reduced obesity risk for children, study finds
April 23, 2019 - EU ban on ‘meaty’ names for veggie food products would affect public sector
April 23, 2019 - KNAUER self-tests gender pay gap one month after Equal Pay Day
April 23, 2019 - Johns Hopkins study reports overdiagnosis of schizophrenia
April 23, 2019 - New approach to repair defects in fetal membranes could prevent life-long medical conditions
April 23, 2019 - Reviving the heart’s regenerative capacities using microRNAs
April 23, 2019 - New pediatric blood pressure guidelines can better predict kids at higher risk of heart disease
April 23, 2019 - Second HIV remission patient rekindles cure hope
$11 million NIH grant for Clemson University helps launch new center for musculoskeletal research

$11 million NIH grant for Clemson University helps launch new center for musculoskeletal research

image_pdfDownload PDFimage_print

With an $11 million grant from the National Institutes of Health Center for Biomedical Research Excellence, Clemson University has launched the South Carolina Center for Translational Research Improving Musculoskeletal Health, or SC-TRIMH, a new research center that will bring together scientists from across South Carolina to change the way musculoskeletal disorders are diagnosed, treated and even studied.

The award was announced Thursday at a meeting of the Clemson University board of trustees. SC-TRIMH is Clemson’s third COBRE-funded center; since 2009, Clemson has received more than $40 million in COBRE funding.

Led by bioengineers at Clemson, SC-TRIMH combines orthopedics and other clinical expertise from the Greenville Health System and the Medical University of South Carolina with computer scientists, computational engineers, biophysicists and other experts to better understand musculoskeletal disorders and to design and evaluate new devices, interventions and drug therapies.

Disorders affecting bones and joints – including arthritis, osteoporosis, chronic back pain and sports injuries – are the leading cause of disability and a major driver of health care costs around the world, especially as the population ages and particularly among poor people. A recent national report showed that one in two American adults have a musculoskeletal problem, with a price tag of nearly $1 trillion in 2014. By 2040, more than one-quarter of Americans – 78 million – will receive a diagnosis of arthritis, according to the Centers for Disease Control and Prevention.

“Thanks to the talent and determination of Clemson faculty, students and staff, and to our invaluable partnerships with GHS and MUSC, South Carolina is leading this exciting new fight against one of the most significant problems facing Americans and American health care,” said Clemson University President James P. Clements. “We are grateful that the NIH has once again acknowledged Clemson University as a leader in academic research, and we look forward to working with our partners to advance innovation and clinical care.”

“By working together, we can significantly improve health care and health outcomes in South Carolina and the nation,” said Spence Taylor, president of Greenville Health System and himself a vascular surgeon. “These innovative partnerships between Clemson faculty and GHS clinicians allow us to solve clinical challenges by leveraging medical insights with the extraordinary research depth of Clemson. What we do today can pave the way for transformational improvements to health care for generations to come.”

“Our team looks forward to deepening our long-standing relationship with Clemson and searching for next-level innovations through this COBRE grant,” said MUSC President David J. Cole. “The challenges we face today in the health care domain are bigger than any one entity can solve. It is only through strategic partnerships based on shared vision and collective effort that we can leverage the strengths and capabilities of our individual institutions to successfully move into the future.”

Revolutionizing testing

A major component of SC-TRIMH is the creation of “virtual clinical trials” to reduce the time it takes novel ideas to go from concept to clinical practice, thereby reducing costs while improving care.

Currently, only about 10 percent of new discoveries find their way into practice within 20 years, due in part to a gap in the clinical trial process, in which innovations go through extensive animal testing before they’re attempted in humans.

“While the current clinical trial process tells us that a product is unsafe or ineffective, they rarely tell us why or suggest how to improve it,” said Hai Yao, Ernest R. Norville Endowed Chair and professor of bioengineering at Clemson University and the administrative leader of the center. “This results in an all-or-nothing mindset in the biomedical industry, which stifles innovation and reduces the number of truly original biomedical projects available to surgeons while increasing costs.”

The virtual clinical trial will fill that gap. It’s akin to very detailed, very personalized flight simulator training for musculoskeletal diseases. Scientists working in SC-TRIMH will build computer simulation models based on patient data, from the cellular pathology of a disease to how the person’s bones and joints move under various scenarios. If the patient needs a hip replacement, surgeons can test various implants in the computer model under different conditions before it’s implanted in the patient.

By constructing very specific models of each step at the body, tissue and molecular scales, the scientists will build a catalog of predictive models that can be used in research, thereby creating a continuous loop of data that will improve innovation.

With Clemson’s rich history in bioengineering and orthopaedic engineering research – establishing one of the first academic departments in the country, playing a major role in creating the Society of Biomaterials and its faculty and students inventing many biomedical advances and devices – SC-TRIMH will also dedicate resources to finding commercial opportunities to make sure innovations are widely available, said Martine LaBerge, professor and chair of the bioengineering department, which recently was ranked fourth in the country for value.

Key partnerships and resources

Several factors position SC-TRIMH to revolutionize clinical trials; chief among them are long-standing collaborations between Clemson and its major health systems partners. Finding, facilitating and nurturing partnerships is the role of the Clemson University School of Health Research (CUSHR), led by Windsor Sherrill, associate vice president for health research and the chief science officer at GHS. CUSHR places the university’s basic scientists and engineers with physicians and other biomedical scientists.

In 2011, Clemson and GHS partnered to open a laboratory, surgical training and innovation space called the Clemson University Bioengineering Innovation Center at the hospital system’s Patewood campus in Greenville, South Carolina, in the same building with clinical orthopedics, vascular surgery and imaging. In 2003, the Clemson-MUSC Bioengineering Program opened at the MUSC campus in Charleston, with Yao (the associate chair for the program) and other faculty stationed there full time.

Other key resources are:

– Supercomputing cyberinfrastructure, namely the Palmetto Cluster, which places Clemson fourth among all public universities in the United States in supercomputing capacity;

– Predictive computational modeling, building on the experience of the Institute for Biological Interfaces of Engineering at Clemson;

– Advanced design, 3-D modeling and rapid prototyping of patient-specific devices in the labs of Georges Fadel in the Clemson Engineering Design Application and Research Center;

– Miniaturized smart sensors for biomedical applications that will enable the testing of prototypes, led by Hai Xiao;

– Expertise in animal models, led by Jeryl Jones; and a human cadaver lab, led by GHS orthopedic surgeon Michael Kissenberth, in the CUBEInC facility.

Three core facilities will be created based on these resources: multiscale computational modeling, led by Hai; advanced fabrication and testing, led by Xiao and Fadel; and, at GHS, pre-clinical assessment, led by Jones and Kissenberth.

Investing in the future

The COBRE grant also funds a pipeline of basic scientists to tackle fundamental questions about musculoskeletal disorders. Five Clemson junior researchers were chosen for positions to be supported by the grant for a maximum of three years, by which time they are expected to apply for and receive their own senior-level funding from the NIH. When a junior researcher “graduates,” a new one is chosen in their place.

As a result, Clemson will produce a cascade of new knowledge and untold educational opportunities for undergraduate and graduate students, and new lab technician positions, LaBerge said.

“The SC-TRIMH initiative has potential to enable truly transformative research by connecting Clemson researchers to our GHS orthopedic researchers,” said Michael Kissenberth, an orthopedic surgeon at GHS who, along with Kyle Jeray, chair of GHS’ orthopaedics department, will lead the clinical advisory committee for the program. “Clinical perspective will inform the work of each junior investigator. So often, this is a missing element in health research. With SC-TRIMH and the Clemson University School of Health Research, we are establishing a new approach to investigating musculoskeletal health. This is a wonderful chapter in orthopedic research at GHS and for South Carolina.”

Each of the original cadre of junior researchers has either already received independent funding or is very close.

The original researchers are:

– Hugo Sanabria, a biophysicist, who is using multiscale modeling to uncover the structure, dynamics, and functional relationship of osteoclast-specific V-ATPases in order to design better therapeutic approaches for osteoporosis.

– William Richardson, who is investigating unknown mechano-sensitivities of the collagen-MMP-growth factor network, and he is developing a computational model for screening potential therapeutic interventions for tendons under diverse loads.

– Tong Ye, who is using two-photon excitation fluorescence and second harmonic generation to evaluate cell and matrix changes of cartilage during tissue remodeling to develop needle endoscopy probes with an imaging system to assess cartilage repair in vivo.

– Melinda Harman, who is developing a novel way to determine the tension profiles of soft tissues crossing the knee joint to improve knee replacement design and to define a predictive pre-clinical test protocol for prospective total knee replacement designs.

– Fei Peng, who is developing embedded, micro-wireless strain sensors for hip joint replacement to understand the effect of surgery factors, such as the positioning and choice of implants, on total hip arthroplasty.

In 2009, a $9 million NIH COBRE program grant funded the South Carolina Center for Bioengineering Center for Regeneration and Formation of Tissues (SC BioCRAFT). In 2014, SC BioCRAFT received a renewal award of an additional $11 million. The center has produced more than 300 scientific publications, filed 45 patents, and has received more than $20 million in external funding.

In 2016, a $10.5 million COBRE grant funded the Eukaryotic Pathogens Innovation Center (EPIC). Since the award, EPIC investigators have generated more than $4.5 million in external funding and produced 35 publications. In addition, EPIC secured the first ever NIH training grant at Clemson.

Source:

http://newsstand.clemson.edu/mediarelations/11-million-nih-grant-creates-new-center-for-musculoskeletal-research/

Tagged with:

About author

Related Articles