Breaking News
March 24, 2019 - Hidden differences between pathology of CTE and Alzheimer’s disease discovered
March 24, 2019 - Knowing causative genes of osteoporosis may open door to more effective treatments
March 24, 2019 - Toilet-seat based cardiovascular monitoring system getting ready to begin commercialization
March 24, 2019 - New model for intensive care identifies factors that send ill patients to ICU
March 24, 2019 - Recommendations Issued for HSCT in Multiple Myeloma
March 24, 2019 - Deep brain stimulation provides sustained relief for severe depression
March 24, 2019 - “Statistical significance” may soon be a thing of past?
March 24, 2019 - Researchers track effects of epigenetic marks carried by sperm chromosomes
March 24, 2019 - AHA News: Family Adopts Three Children With Three Different Heart Conditions
March 24, 2019 - Research into opioid painkillers could provide clues for safer drug development
March 23, 2019 - Lung cancer survivor recounts her lifetime struggles
March 23, 2019 - Radial and femoral approach for PCI achieve similar results in terms of survival
March 23, 2019 - Study sheds light on the optimal timing of coronary angiography in NSTEMI patients
March 23, 2019 - Excess hormones could cause a condition that can lead to blindness in women, study finds
March 23, 2019 - Dramatic shifts in first-time opioid prescriptions bring hope, concern
March 23, 2019 - Antidepressant drugs may not work when neurons are out of shape
March 23, 2019 - TTUHSC El Paso to establish endowed chair in neurology through a major grant
March 23, 2019 - New device approved by FDA for treating patients with moderate-to-severe heart failure
March 23, 2019 - People with peripheral artery disease have lower Omega-3 Index, shows research
March 23, 2019 - Trigger warnings have minimal impact on how people respond to content, shows research
March 23, 2019 - Gilead Announces Data From Two Studies Supporting Further Development of GS-6207, a Novel, Investigational HIV-1 Capsid Inhibitor as a Component of Future Long-Acting HIV Therapies
March 23, 2019 - Selfish genetic elements amplify inflammation and age-related diseases
March 23, 2019 - Study provides new understanding of how the brain recovers from damage caused by stroke
March 23, 2019 - CRISPR/Cas libraries could revolutionize drug discovery
March 23, 2019 - Allergic reaction during pregnancy may alter sexual-development in offspring’s brain
March 23, 2019 - Seeing through a robot’s eyes helps those with profound motor impairments
March 23, 2019 - Recent research shows that ease of breastfeeding after C-section differs culturally
March 23, 2019 - Newly discovered parameters offer more control over efficient release of drugs
March 23, 2019 - ‘De-tabooing’ of abortion- Women would like more support from health care community
March 23, 2019 - Anti-TB drugs can increase susceptibility to Mtb reinfection
March 23, 2019 - New survey indicates need of attention to neglected tropical diseases
March 23, 2019 - Innovative in vitro method to develop easy-to-swallow medicine for children and older people
March 23, 2019 - Sugary drinks could raise risk of early deaths finds study
March 23, 2019 - Lian wins ENGINE grant for stem-cell-based therapy to treat Type 1 diabetes
March 23, 2019 - Overall, Physicians Are Happy and Enjoy Their Lives
March 23, 2019 - Researchers discover how blood vessels protect the brain during inflammation
March 23, 2019 - CDC study shows modest improvement in optimal hospital breastfeeding policy
March 23, 2019 - Family-based prevention program to reduce alcohol use among older teens
March 23, 2019 - Remote monitoring of implanted defibrillators in heart failure patients prevents hospitalizations
March 23, 2019 - Appropriate doffing of personal protective equipment may reduce healthcare worker contamination
March 23, 2019 - Window screens can suppress mosquito populations, reduce malaria in Tanzania
March 23, 2019 - Researchers discover new biomarker for postoperative liver dysfunction
March 23, 2019 - Pregnancy history may be linked to cognitive function in older women, finds study
March 23, 2019 - Study shows ticagrelor is equally safe and effective as clopidogrel after heart attack
March 23, 2019 - FDA Approves First Drug for Postpartum Depression, Zulresso (brexanolone)
March 23, 2019 - New guidelines outline new treatment management for psoriasis
March 23, 2019 - Thermally abused cooking oil may promote progression of breast cancer
March 23, 2019 - High-fructose corn syrup fuels growth of colon tumors in mice
March 23, 2019 - Partnership aims at establishing best practices to promote diversity in clinical trials
March 23, 2019 - New study examines presence of microbes in tap water from residences, office buildings
March 23, 2019 - Early life trauma may affect brain structure, contribute to major depressive disorder
March 23, 2019 - NIH starts clinical trial of drug to treat cravings associated with opioid use disorder
March 23, 2019 - Cervix bacteria, immune factors could be a warning signal of premature birth, reports new research
March 23, 2019 - Worst-ever emergency care performance figures underscore the need to focus on staffing
March 23, 2019 - The Current issue of “The view from here” is concerned with Cancer
March 23, 2019 - Mouse model validates how ‘good’ and ‘bad’ bacteria affect acne
March 23, 2019 - Individual amygdala neurons respond to touch, imagery and sounds
March 23, 2019 - Combination of two topical creams can prevent cancer
March 23, 2019 - Study suggests depression screening when assessing African-Americans for schizophrenia
March 23, 2019 - New electronic support system for choosing drug treatment based on patient’s genotype
March 23, 2019 - First-of-its-kind study provides pregnancy statistics of imprisoned U.S. women
March 23, 2019 - Marinus Pharmaceuticals Initiates Phase 3 Study in Children with PCDH19-Related Epilepsy
March 23, 2019 - Laparoscopy: MedlinePlus Lab Test Information
March 23, 2019 - Shellfish allergies: can they be treated?
March 23, 2019 - Toilet seat heart monitoring system
March 23, 2019 - Researchers identify way to improve common treatment for PTSD
March 23, 2019 - High potency cannabis use linked to psychosis finds study
March 23, 2019 - Evoke Pharma Submits Response to FDA Review Letter for Gimoti NDA
March 23, 2019 - Tracking HIV’s ever-evolving genome in effort to prioritize public health resources
March 23, 2019 - Scientists grow most sophisticated brain organoid to date
March 23, 2019 - ADHD drug raising risk of psychosis
March 22, 2019 - FDA approves brexanolone, first drug developed to treat postpartum depression
March 22, 2019 - Gruesome cat and dog experiments by the USDA exposed
March 22, 2019 - Ball pits used in children’s physical therapy may contribute to germ transmission
March 22, 2019 - Long-term use of inexpensive weight-loss drug may be safe and effective
March 22, 2019 - FDA Approves Sunosi (solriamfetol) for Excessive Daytime Sleepiness Associated with Narcolepsy or Obstructive Sleep Apnea
March 22, 2019 - Anti-Müllerian Hormone Test: MedlinePlus Lab Test Information
March 22, 2019 - Finding the right exercise, diet aids for HIV patients
March 22, 2019 - Health Plans For State Employees Use Medicare’s Hammer On Hospital Bills
March 22, 2019 - Researchers develop new tool for imaging large groups of neurons in living animals
Genetically engineered 3-D human muscle transplant in a murine model

Genetically engineered 3-D human muscle transplant in a murine model

image_pdfDownload PDFimage_print
Vascular cell transduction and multicellular culturing strategy. Schematic representation of the diverse multicellular cultures examined: co-cultures and tri-cultures of naive or ANGPT-1 secreting endothelial cells with naive or VEGF-secreting SMCs and human myoblasts to generate 3D vascular networks within skeletal muscle constructs. Credit: Communications Biology, doi:10.1038/s42003-018-0161-0.

A growing need for tissues and organs in surgical reconstruction is addressed by the promising field of tissue engineering. For instance, muscle atrophy results from severe traumatic events including deep burns and cancer, requiring site/donor compatible surgical reconstruction. The existing ‘gold standard’ treatment in reconstructive surgery incorporates autologous flaps, although the technique is limited by low anatomical availability and donor site morbidity during clinical transplantation. As a clinically favorable alternative, tissue engineering presents strategies to engineer tissue grafts with improved quality and effectiveness. To maintain the viability of implants upon transplantation, increasing efforts are invested in designing pre-vascularized engineered tissue. Design examples include a multicellular culture of endothelial, mural and tissue-specific cells for self-assembly of vessel networks and cellular co-culture to build lasting, stable blood vessels to induce neovascularization within the host.

Recent studies have also demonstrated the possibility of engineering three-dimensional (3-D) muscle grafts from human cells (adult and differentiated) for seamless integration with native tissue upon transplantation. In parallel studies, a group of researchers showed that intra-arterial injections of adult venous endothelial cells proximal to an occluded artery in critical limb ischemia patients stimulated collateral expansion in Phase I and Phase Ib clinical trials.

The same multidisciplinary research team from the departments of Biomedical Engineering and Medicine now report on the development of a 3-D prevascularized engineered muscle containing human myoblasts (muscle cells) with genetically engineered endothelial cells and smooth muscle cells (SMCs), transplanted within a mouse host to enhance neovascularization and myogenesis. The outcomes are detailed in Nature Communications Biology, where Luba Perry and co-workers integrated myoblasts in endothelial cell-mural cell co-cultures as a tissue engineering strategy to increase the mechanical strength of transplanted tissue. The genetically modified vascular cells were cleared for clinical trials by the Food and Drug Administration (FDA), with potential for use in autologous vascularized tissue construction. The study showed promise for translating genetically engineered muscle in clinical settings to overcome autologous tissue shortage and accelerate host neovascularization for engineered grafts integration post-transplantation.

Images and schematics of the abdominal imaging window (AIW), a) schematic representation of the surgical procedure, b,c) top and bottom view of the AIW, d,e) lateral view of the AIW (scale bar = 10 mm), f) the AIW immediately post-transplantation in the abdominal muscle, the area of the implanted graft is seen in yellow dashes, g) the AIW 14 days post-implantation in the muscle, h) the graft integrated completely at 14 days post implantation in the muscle, i) the surgical procedure imaged with a mouse stabilized in a custom-made stabilizing imaging device (SID) for intravital confocal imaging. Credit: Communications Biology, doi:10.1038/s42003-018-0161-0.

The scientists seeded a multicellular culture of human angiopoietin 1 (ANGPT1) expressing endothelial cells (endothelial cellANGPT1) with human vascular endothelial growth factor (VEGF) expressing smooth muscle cells (SMCVEGF) and human myoblasts (hMyo) on 3-D polymer scaffolds to accelerate the vessel network formation and neovascularization in vitro and in vivo. Upon transplantation into mice with an abdominal wall defect, the host neovascularization was observed via an abdominal imaging window (AIW) for up to 14 days. To avoid transplant rejection, the study used immunodeficient mice for human graft integration. Since the cells used in the study were already FDA-approved for use in clinical trials, the findings may have significant implications in the construction of autologous, transplantable grafts for clinical integration and vascularization.

To genetically engineer the endothelial cell ANGPT1, adult endothelial cells were transduced with a retroviral vector to express ANGPT1 and then transduced with ZsGreen lentiviral particles. Adult SMCs were also similarly transduced with a retroviral vector to express VEGF165 (SMCVEGF) by replicating an established protocol. The expression of transgenes was determined via immunohistochemistry and enzyme linked immunosorbent assays (ELISAs).

In vitro vessel-like network stability. Representative 3D confocal images of whole-mount immunofluorescent scaffolds populated with endothelial cellANGPT1 (green), SMCsVEGF (red) and nuclei (blue). Credit: Communications Biology, doi:10.1038/s42003-018-0161-0.

Scaffolds were fabricated using 3-D porous poly-L-lactic acid (PLLA) and polylactic glycolic acid (PLGA) polymers with ranging pore sizes and porosity, replicating a previously described protocol. The authors investigated six multicellular cultures (co- and tri-culture cells) on separate scaffolds to generate 3-D vascular networks. Scaffolds were populated with diverse compositions of endothelial cellANGPT1, SMCsVEGF and primary human skeletal muscle cells (hMyo) visualized using immunofluorescence; endothelial cells were stained green, αSMA-positive cells stained red, and nuclei stained blue. The higher number of endothelial cells surrounded by αSMA-expressing mural cells suggested the formation of stable vessels.

To investigate the influence of ANGPT1 and VEGF overexpression on vessel maturation, the vascularized constructs were stained for collagen IV and vascular endothelial (VE) cadherin. The results demonstrated a higher percentage of collagen IV-wrapped vessels.

In vitro vessel-like maturity. Representative confocal images of whole-mount immunofluorescent scaffolds populated with tricultures (Endothelial cells – green, collagen positive cells – red, nuclei – blue). Credit: Communications Biology, doi:10.1038/s42003-018-0161-0.

Once ANGPT1-overexpressing endothelial cells were found to increase both the length and maturity of the vessel-like networks formed in vitro, the effect on host vascularization was examined upon transplantation. For in vivo investigations, the scientists used a previously established rectus abdominis muscle defect nude mouse model. The engineered muscles included those formed from a naive endothelial cell-SMC-myoblasts tri-culture as the control, alongside muscles formed from endothelial cellANGPT1, SMCVEGF and myoblasts tri-culture as the test, implanted four days after seeding. Both groups showed highly effective host-graft integration 14 days post implantation.

In vivo neovascularization, a) representative confocal images of the graft obtained through the AIW for control vs. test grafts (green: human endothelial cells-ZsGreen, red: TRITC dextran, blue: mouse CD31), b) representative confocal large-magnification images of grafts with native or ANGPT1 and VEGF expressing tricultures (scale bar – 100 µm) c) representative image of TRITC-dextran circulating in transplanted scaffolds and its respective AngioTool analysis; vessel skeletons are in red, vessel borders in yellow and vessel junctions in blue, d) AngioTool quantitated total vessel length of both functional and non-functional mouse blood vessels. Data are expressed as box-and-whisker plots, e) AngioTool-quantified total vessel length of functional blood vessels, d) AngioTool-quantified total vessel length of implanted endothelial cells (ECs) (control and test), implanted ECs were mostly noticeable in the control grafts, while those in the test grafts were barely noticeable at days 4-14. Credit: Communications Biology, doi:10.1038/s42003-018-0161-0.

By as early as four days after implantation, the host vessel invaded into both graft types, although the progression and coverage were faster in the ANGPT-1- and VEGF-expressing test grafts. After 14 days of transplantation, the test grafts were more densely populated with host vasculature than the control triculture grafts; by this time, the implanted scaffold vasculature for either graft was no longer visible. At four to 14 days post-transplantation, the total length of the vessels in constructs were calculated using the AngioTool software, with greater vessel length seen in ANGPT1- and VEGF- expressing grafts compared to the controls. Images of hematoxylin and eosin (H&E) stains of transplanted grafts indicated they were perfused and functional comparable to physiological vessel density of the surrounding native muscle by day 14. Muscle fibers formed around and inside the graft area within the same timeline, covering a larger area in the test grafts compared to the controls to indicate superior myogenesis.

The detailed construction of a genetically engineered, vascularized muscle tissue can be translated to engineer other types of vascularized tissue by integrating tissue-specific cell types. The ability to derive such cells from elderly patients is of great importance as they can be transplanted without rejection. The regulatory challenges along the bench-to-bedside route of autologous engineered tissue products present a challenge, accompanied with the time-length for cell culture, which must be accounted for. Engineered muscles should be further optimized to better mimic native muscle tissue, followed by animal studies in larger animal models—alongside comparisons between different donor cells, prior to translating the genetically engineered vascularized 3-D muscle grafts to a clinical setting.


Explore further:
New approach reduces immune response to tissue engineered vascular grafts

More information:
Luba Perry et al. Genetically engineered human muscle transplant enhances murine host neovascularization and myogenesis, Communications Biology (2018). DOI: 10.1038/s42003-018-0161-0

Luba Perry et al. Elderly Patient-Derived Endothelial Cells for Vascularization of Engineered Muscle, Molecular Therapy (2017). DOI: 10.1016/j.ymthe.2017.02.011

Naoto Koike et al. Creation of long-lasting blood vessels, Nature (2004). DOI: 10.1038/428138a

Journal reference:
Molecular Therapy

Nature

Tagged with:

About author

Related Articles