Breaking News
January 18, 2019 - New study shows link between secondhand smoke and cardiac arrhythmia
January 18, 2019 - DZIF scientists reveal problems with available diagnostics for Zika and chikungunya virus
January 18, 2019 - Breast cancers more likely to metastasize in young women within 10 years of giving birth
January 18, 2019 - Blood vessels can now be created perfectly in a petri dish
January 18, 2019 - Study identifies prominent socioeconomic and racial disparities in health behavior in Indiana
January 18, 2019 - Young-Onset Type 2 Diabetes Tied to Increased Hospitalization Risk
January 18, 2019 - For-profit nursing schools associated with lower performance on nurse licensure test
January 18, 2019 - Considering the culture of consent in medicine
January 18, 2019 - Researchers identify comprehensive guidelines for managing severe atopic dermatitis
January 18, 2019 - Analyzing proteins in blister fluid may classify burn severity more accurately
January 18, 2019 - Study finds higher suicide rates among youth who were Medicaid enrollees
January 18, 2019 - Opioid drugs often overprescribed to children for pain relief, say CHOP surgeons
January 18, 2019 - New biodegradable wound dressing material accelerates healing
January 18, 2019 - Life in Space May Take Toll on Spinal Muscles
January 18, 2019 - Bulldogs’ screw tails linked to human genetic disease
January 18, 2019 - Immunotherapy target identified for pediatric cancers
January 18, 2019 - Financial stress may increase heart disease risk in African Americans
January 18, 2019 - Scientists solve another piece of Ebola virus puzzle
January 18, 2019 - New project finds how endocrine disruptors interfere with thyroid functions
January 18, 2019 - Research finds decline in ketone body utilization when coronary circulation is reduced
January 18, 2019 - Let’s map our DNA and save billions each year in health costs
January 18, 2019 - AI demonstrates potential to identify irregular heart rhythms as well as humans
January 17, 2019 - Study shows link between air pollution and increased risk of sleep apnea
January 17, 2019 - Neck-strengthening exercises can protect athletes from concussions
January 17, 2019 - Computer model shows how to better control MRSA outbreaks
January 17, 2019 - Pain is unpleasant, and now scientists have identified the set of responsible neurons
January 17, 2019 - CUIMC Celebrates 2018-2019
January 17, 2019 - Study reveals potential pathway for endothelial cells to avoid apoptosis
January 17, 2019 - Hamilton Storage launches LabElite DeCapper SL to expand LabElite product family
January 17, 2019 - Location of epigenetic changes co-locate with genetic signal causing psychartric disorder
January 17, 2019 - Researchers awarded 6.1 million euros to address female fertility problems
January 17, 2019 - Counseling appointments fail to reduce weight gain during pregnancy, shows study
January 17, 2019 - Contraceptive patch that could provide 6 months of contraception within seconds
January 17, 2019 - Yeast model may pave way for development of novel therapies for metabolic disorders
January 17, 2019 - Study determines impact of antibiotic perturbation of the gut microbiome on skeletal health
January 17, 2019 - Cardiometabolic Risk Up With Tourette, Chronic Tic Disorder
January 17, 2019 - Hong Kong scientists claim ‘broad-spectrum’ antiviral breakthrough
January 17, 2019 - Researchers discover the brain cells that make pain unpleasant | News Center
January 17, 2019 - Hepatitis Is Common in New Cancer Patients
January 17, 2019 - Podcast: KHN’s ‘What The Health?’ Drug Prices Are Rising Again. Is Someone Going To Do Something About It?
January 17, 2019 - Smoking significantly increases your biological age, study shows
January 17, 2019 - B-group vitamins may be beneficial for people with first episode psychosis
January 17, 2019 - Researchers demonstrate how manganese produces parkinsonian syndrome
January 17, 2019 - Researchers suggest link between personality type and attitude towards others’ bodies
January 17, 2019 - Mutant mice administered with cocaine failed to exhibit hyperactivity, shows study
January 17, 2019 - Health Tip: Understanding a Heart Murmur
January 17, 2019 - Gut protein mutations shield against spikes in glucose
January 17, 2019 - Engineered immune cells target broad range of pediatric solid tumors in mice | News Center
January 17, 2019 - Study provides comprehensive description of associations between mental disorders
January 17, 2019 - Study finds link between high pesticide exposure and poor sense of smell among farmers
January 17, 2019 - Many cancer patients have undiagnosed hepatitis
January 17, 2019 - New study finds only 13% of outpatient antibiotic prescriptions to be appropriate
January 17, 2019 - Stem cell-based approach to diabetes offers hope for treatment
January 17, 2019 - New project receives €8.65 million from EU and Canada to ease genomic, health data sharing
January 17, 2019 - Improvements in pharmacological study to fight cognitive impairment in schizophrenia
January 17, 2019 - Study looks at trends over time in oral antibiotic prescribing by dermatologists
January 17, 2019 - Most substance use disorder treatment facilities do not offer medication treatment
January 17, 2019 - Multiple sclerosis could benefit from stem cell therapy
January 17, 2019 - Researchers manipulate T cells to improve transplant success
January 17, 2019 - Put away your rulers and reach for your phone
January 17, 2019 - Mindfulness linked with fewer menopausal symptoms
January 17, 2019 - Integrated care to women with PMADs offered at several levels
January 17, 2019 - Researchers identify MANF as a rejuvenating factor in parabiosis
January 17, 2019 - Truncal mutations study suggests new direction in origins of cancer
January 17, 2019 - Beckman Coulter launches new ClearLLab 10C System for clinical flow cytometry lab
January 17, 2019 - Effects of linoleic acid on the body are largely dependent on genes, shows study
January 17, 2019 - Pre-injury exercise reduces damage to both muscles and nerves, study finds
January 17, 2019 - Minimizing Antibody Size to Maximize Research Potential
January 17, 2019 - Research finds large genome in tiny forest defoliator
January 17, 2019 - Technology helps reduce the yearning for unhealthy food
January 17, 2019 - Imec develops prototype cardiovascular device
January 17, 2019 - New Drug Application for Insomnia Disorder Treatment Lemborexant Submitted in the United States
January 17, 2019 - What you should know about teeth whitening
January 17, 2019 - Why Older Adults Should Eat More Protein (And Not Overdo Protein Shakes)
January 17, 2019 - Colorectal cancer mortality rates predicted to increase globally
January 17, 2019 - Scientists discover mutational signatures of tumor hypoxia
January 17, 2019 - New evidence shows how fever alters immune cells
January 17, 2019 - Researchers find new class of blood pressure-regulating peptides in vampire bat venom
January 17, 2019 - Promega to exhibit new Maxwell RSC48 platform at 2019 Festival of Genomics
January 17, 2019 - Study pinpoints immune cells that could be key to tackling hypertension
Genetically engineered 3-D human muscle transplant in a murine model

Genetically engineered 3-D human muscle transplant in a murine model

image_pdfDownload PDFimage_print
Vascular cell transduction and multicellular culturing strategy. Schematic representation of the diverse multicellular cultures examined: co-cultures and tri-cultures of naive or ANGPT-1 secreting endothelial cells with naive or VEGF-secreting SMCs and human myoblasts to generate 3D vascular networks within skeletal muscle constructs. Credit: Communications Biology, doi:10.1038/s42003-018-0161-0.

A growing need for tissues and organs in surgical reconstruction is addressed by the promising field of tissue engineering. For instance, muscle atrophy results from severe traumatic events including deep burns and cancer, requiring site/donor compatible surgical reconstruction. The existing ‘gold standard’ treatment in reconstructive surgery incorporates autologous flaps, although the technique is limited by low anatomical availability and donor site morbidity during clinical transplantation. As a clinically favorable alternative, tissue engineering presents strategies to engineer tissue grafts with improved quality and effectiveness. To maintain the viability of implants upon transplantation, increasing efforts are invested in designing pre-vascularized engineered tissue. Design examples include a multicellular culture of endothelial, mural and tissue-specific cells for self-assembly of vessel networks and cellular co-culture to build lasting, stable blood vessels to induce neovascularization within the host.

Recent studies have also demonstrated the possibility of engineering three-dimensional (3-D) muscle grafts from human cells (adult and differentiated) for seamless integration with native tissue upon transplantation. In parallel studies, a group of researchers showed that intra-arterial injections of adult venous endothelial cells proximal to an occluded artery in critical limb ischemia patients stimulated collateral expansion in Phase I and Phase Ib clinical trials.

The same multidisciplinary research team from the departments of Biomedical Engineering and Medicine now report on the development of a 3-D prevascularized engineered muscle containing human myoblasts (muscle cells) with genetically engineered endothelial cells and smooth muscle cells (SMCs), transplanted within a mouse host to enhance neovascularization and myogenesis. The outcomes are detailed in Nature Communications Biology, where Luba Perry and co-workers integrated myoblasts in endothelial cell-mural cell co-cultures as a tissue engineering strategy to increase the mechanical strength of transplanted tissue. The genetically modified vascular cells were cleared for clinical trials by the Food and Drug Administration (FDA), with potential for use in autologous vascularized tissue construction. The study showed promise for translating genetically engineered muscle in clinical settings to overcome autologous tissue shortage and accelerate host neovascularization for engineered grafts integration post-transplantation.

Images and schematics of the abdominal imaging window (AIW), a) schematic representation of the surgical procedure, b,c) top and bottom view of the AIW, d,e) lateral view of the AIW (scale bar = 10 mm), f) the AIW immediately post-transplantation in the abdominal muscle, the area of the implanted graft is seen in yellow dashes, g) the AIW 14 days post-implantation in the muscle, h) the graft integrated completely at 14 days post implantation in the muscle, i) the surgical procedure imaged with a mouse stabilized in a custom-made stabilizing imaging device (SID) for intravital confocal imaging. Credit: Communications Biology, doi:10.1038/s42003-018-0161-0.

The scientists seeded a multicellular culture of human angiopoietin 1 (ANGPT1) expressing endothelial cells (endothelial cellANGPT1) with human vascular endothelial growth factor (VEGF) expressing smooth muscle cells (SMCVEGF) and human myoblasts (hMyo) on 3-D polymer scaffolds to accelerate the vessel network formation and neovascularization in vitro and in vivo. Upon transplantation into mice with an abdominal wall defect, the host neovascularization was observed via an abdominal imaging window (AIW) for up to 14 days. To avoid transplant rejection, the study used immunodeficient mice for human graft integration. Since the cells used in the study were already FDA-approved for use in clinical trials, the findings may have significant implications in the construction of autologous, transplantable grafts for clinical integration and vascularization.

To genetically engineer the endothelial cell ANGPT1, adult endothelial cells were transduced with a retroviral vector to express ANGPT1 and then transduced with ZsGreen lentiviral particles. Adult SMCs were also similarly transduced with a retroviral vector to express VEGF165 (SMCVEGF) by replicating an established protocol. The expression of transgenes was determined via immunohistochemistry and enzyme linked immunosorbent assays (ELISAs).

In vitro vessel-like network stability. Representative 3D confocal images of whole-mount immunofluorescent scaffolds populated with endothelial cellANGPT1 (green), SMCsVEGF (red) and nuclei (blue). Credit: Communications Biology, doi:10.1038/s42003-018-0161-0.

Scaffolds were fabricated using 3-D porous poly-L-lactic acid (PLLA) and polylactic glycolic acid (PLGA) polymers with ranging pore sizes and porosity, replicating a previously described protocol. The authors investigated six multicellular cultures (co- and tri-culture cells) on separate scaffolds to generate 3-D vascular networks. Scaffolds were populated with diverse compositions of endothelial cellANGPT1, SMCsVEGF and primary human skeletal muscle cells (hMyo) visualized using immunofluorescence; endothelial cells were stained green, αSMA-positive cells stained red, and nuclei stained blue. The higher number of endothelial cells surrounded by αSMA-expressing mural cells suggested the formation of stable vessels.

To investigate the influence of ANGPT1 and VEGF overexpression on vessel maturation, the vascularized constructs were stained for collagen IV and vascular endothelial (VE) cadherin. The results demonstrated a higher percentage of collagen IV-wrapped vessels.

In vitro vessel-like maturity. Representative confocal images of whole-mount immunofluorescent scaffolds populated with tricultures (Endothelial cells – green, collagen positive cells – red, nuclei – blue). Credit: Communications Biology, doi:10.1038/s42003-018-0161-0.

Once ANGPT1-overexpressing endothelial cells were found to increase both the length and maturity of the vessel-like networks formed in vitro, the effect on host vascularization was examined upon transplantation. For in vivo investigations, the scientists used a previously established rectus abdominis muscle defect nude mouse model. The engineered muscles included those formed from a naive endothelial cell-SMC-myoblasts tri-culture as the control, alongside muscles formed from endothelial cellANGPT1, SMCVEGF and myoblasts tri-culture as the test, implanted four days after seeding. Both groups showed highly effective host-graft integration 14 days post implantation.

In vivo neovascularization, a) representative confocal images of the graft obtained through the AIW for control vs. test grafts (green: human endothelial cells-ZsGreen, red: TRITC dextran, blue: mouse CD31), b) representative confocal large-magnification images of grafts with native or ANGPT1 and VEGF expressing tricultures (scale bar – 100 µm) c) representative image of TRITC-dextran circulating in transplanted scaffolds and its respective AngioTool analysis; vessel skeletons are in red, vessel borders in yellow and vessel junctions in blue, d) AngioTool quantitated total vessel length of both functional and non-functional mouse blood vessels. Data are expressed as box-and-whisker plots, e) AngioTool-quantified total vessel length of functional blood vessels, d) AngioTool-quantified total vessel length of implanted endothelial cells (ECs) (control and test), implanted ECs were mostly noticeable in the control grafts, while those in the test grafts were barely noticeable at days 4-14. Credit: Communications Biology, doi:10.1038/s42003-018-0161-0.

By as early as four days after implantation, the host vessel invaded into both graft types, although the progression and coverage were faster in the ANGPT-1- and VEGF-expressing test grafts. After 14 days of transplantation, the test grafts were more densely populated with host vasculature than the control triculture grafts; by this time, the implanted scaffold vasculature for either graft was no longer visible. At four to 14 days post-transplantation, the total length of the vessels in constructs were calculated using the AngioTool software, with greater vessel length seen in ANGPT1- and VEGF- expressing grafts compared to the controls. Images of hematoxylin and eosin (H&E) stains of transplanted grafts indicated they were perfused and functional comparable to physiological vessel density of the surrounding native muscle by day 14. Muscle fibers formed around and inside the graft area within the same timeline, covering a larger area in the test grafts compared to the controls to indicate superior myogenesis.

The detailed construction of a genetically engineered, vascularized muscle tissue can be translated to engineer other types of vascularized tissue by integrating tissue-specific cell types. The ability to derive such cells from elderly patients is of great importance as they can be transplanted without rejection. The regulatory challenges along the bench-to-bedside route of autologous engineered tissue products present a challenge, accompanied with the time-length for cell culture, which must be accounted for. Engineered muscles should be further optimized to better mimic native muscle tissue, followed by animal studies in larger animal models—alongside comparisons between different donor cells, prior to translating the genetically engineered vascularized 3-D muscle grafts to a clinical setting.


Explore further:
New approach reduces immune response to tissue engineered vascular grafts

More information:
Luba Perry et al. Genetically engineered human muscle transplant enhances murine host neovascularization and myogenesis, Communications Biology (2018). DOI: 10.1038/s42003-018-0161-0

Luba Perry et al. Elderly Patient-Derived Endothelial Cells for Vascularization of Engineered Muscle, Molecular Therapy (2017). DOI: 10.1016/j.ymthe.2017.02.011

Naoto Koike et al. Creation of long-lasting blood vessels, Nature (2004). DOI: 10.1038/428138a

Journal reference:
Molecular Therapy

Nature

Tagged with:

About author

Related Articles