Breaking News
March 18, 2019 - Taking painkillers during pregnancy is not responsible for asthma risk in children, study shows
March 18, 2019 - Prediagnosis Psychiatric Care Linked to Worse Cancer Mortality
March 18, 2019 - Paris hospital halts stool study after donor deluge
March 18, 2019 - Partial oral antibiotic therapy shows efficacy and safety in patients with infectious endocarditis
March 18, 2019 - Olympus improves access to science education through BioBus collaboration
March 18, 2019 - Depression screening does not improve quality of life in heart attack patients
March 18, 2019 - Echocardiography may aid in patient selection for TMVR
March 18, 2019 - Are ‘Inactive’ Ingredients in Your Drugs Really So Harmless?
March 18, 2019 - Scientists tackle rare retinal disease in unique research project
March 18, 2019 - Death By A Thousand Clicks
March 18, 2019 - Absorbable, antibiotic-eluting envelope can reduce rate of cardiac device infections
March 18, 2019 - Hormonal treatment associated with depression in men with prostate cancer
March 18, 2019 - Porvair Sciences launches reinforced 96-well deep round microplate
March 18, 2019 - Simplified catheter ablation could slash waiting lists for atrial fibrillation patients
March 18, 2019 - BFR therapy as part of rehabilitation following ACL surgery may slow bone loss
March 18, 2019 - A human model to test implants for cataract surgery
March 18, 2019 - New risk adjustment model could reduce financial penalty for safety net hospitals
March 18, 2019 - NHS cancer patients’ wait to start treatment worrying
March 18, 2019 - Inventiva Announces Results from Phase IIb Clinical Trial with Lanifibranor in Systemic Sclerosis
March 18, 2019 - Cologuard
March 18, 2019 - Researchers find evidence of prenatal environment tuning genomic imprinting
March 18, 2019 - Dolomite Bio launches novel Nadia product family for single-cell research
March 18, 2019 - Intellipharmaceutics Announces Resubmission of New Drug Application to the U.S. FDA for its Oxycodone ER
March 18, 2019 - Excessive gestational weight gain tied to maternal morbidity
March 18, 2019 - RCEM issues position statement on metrics to supplement four-hour standard target
March 17, 2019 - Noncontrast Brain MRI Effective for Monitoring Multiple Sclerosis
March 17, 2019 - Brain region plays key role in regulation of parenting behavior, study finds
March 17, 2019 - Natural speed limit on DNA replication sets pace for life’s first steps
March 17, 2019 - New research reveals overlooked impact of herbicide glyphosate on the environment
March 17, 2019 - Molecular patterns could help predict relapse risk in breast cancer patients
March 17, 2019 - Study confirms sensitivity of microbiological cultures for detecting cholera
March 17, 2019 - Scientists Spot Clues to Predicting Breast Cancer’s Return
March 17, 2019 - Scientists identify gene that keeps PTSD-like behavior at bay in female mice
March 17, 2019 - New method would allow doctors to detect earliest stages of cancers in the lymph nodes
March 17, 2019 - Cholesterol protein discovery raises hope for smarter drugs
March 17, 2019 - New insect medium delivers high viable cell density growth and protein yield
March 17, 2019 - Opioid crisis brings concerns about heart dangers
March 17, 2019 - Resistance Training May Prevent Type 2 Diabetes Progression
March 17, 2019 - Bioluminescence sensors make new approaches to drug discovery possible
March 17, 2019 - New FDA Rules Aim to Keep Kids From Flavored E-Cigarettes
March 17, 2019 - Vitamin B3 analogue boosts production of blood cells
March 17, 2019 - Government cuts to stop smoking services have detrimental impact on public health
March 17, 2019 - Common tool to assess potential adoptive parents lags behind societal changes
March 17, 2019 - Patients’ own cells could be the key to treating Crohn’s disease
March 17, 2019 - Diagnostic delays common in inflammatory bowel disease
March 17, 2019 - Study uncovers dramatic differences in the brains of Hispanics with dementia
March 17, 2019 - Study describes epigenetic loss that changes how cells obtain energy from cancer
March 16, 2019 - Active Bathing in Non-ICU Setting Does Not Cut Infections
March 16, 2019 - How the immune system maintains a healthy gut microbiota
March 16, 2019 - Bacteria ‘trap’ could help in the fight against antimicrobial resistance
March 16, 2019 - Hospital work environment associated with all EHR usability outcomes
March 16, 2019 - Study unravels mystery behind how the brain encodes time when forming long-term memories
March 16, 2019 - Light physical activity may lower risk of cardiovascular disease in older women
March 16, 2019 - USP15 enzyme could potentially lead to new treatments for breast, pancreatic cancer
March 16, 2019 - After Chinese Infant Gene-Editing Scandal, U.S. Health Officials Join Call for a Ban
March 16, 2019 - PACS1 syndrome – Genetics Home Reference
March 16, 2019 - Researchers discover an unexpected organization of antimicrobial molecules that amplifies immune response
March 16, 2019 - With New Study, Era of Open-Heart Surgery for Aortic Stenosis May be Ending
March 16, 2019 - Dolomite Bio introduces high throughput sNuc-Seq protocol for its Nadia Instrument
March 16, 2019 - New course prepares materials scientists for biomedical testing
March 16, 2019 - Finding clues to a functional HIV cure
March 16, 2019 - People with chronic periodontitis have higher risk for dementia
March 16, 2019 - Few heart care recommendations are based on rigorous study
March 16, 2019 - Colorectal cancer diagnosed at early age is distinct from that in older patients
March 16, 2019 - Researchers use MRI and AI techniques at birth to predict cognitive development at age 2
March 16, 2019 - Discarding information from the brain linked to more mental effort, finds study
March 16, 2019 - OTA International supplement provides current snapshot and forward look at global trauma systems
March 16, 2019 - NIH trial to track outcomes of liver transplantation from HIV+ donors to HIV+ recipients
March 16, 2019 - Apple Heart Study shows how wearable technology can help detect heart problem
March 16, 2019 - Researchers determine factors that cause stress development in the human body
March 16, 2019 - Elderly Men Undertreated for Osteoporosis
March 16, 2019 - People with chronic pain are coping with the help of Pinterest, new study reveals
March 16, 2019 - New study could reveal the complex interaction between languages and human beings who use them
March 16, 2019 - Tufts engineers develop new tool to identify metabolic signatures linked to disease
March 16, 2019 - New proteomics-based test could aid in early detection of ovarian cancer
March 16, 2019 - New research opens possibility of using sperm taken from testicles to overcome infertility
March 16, 2019 - Scientists find new proof that narcolepsy is an autoimmune disease
March 16, 2019 - FDA OKs a New Generic of the Blood Pressure Drug Valsartan to Ease Shortage Due to Recalls
March 16, 2019 - Eliminating smoking and obesity could affect racial health disparities
March 16, 2019 - Wearable tracking device achieves higher accuracy in position tracking using thermal sensors
Map of human liver cells reveals molecular make-up of individual cells

Map of human liver cells reveals molecular make-up of individual cells

image_pdfDownload PDFimage_print

A map of the cells in the human liver has been created by University Health Network Transplant Program and University of Toronto researchers, revealing for the first time differences between individual cells at the molecular level which can have a profound impact on their behaviour in tissue, tumours and disease.

Using powerful, state-of-the-art technologies and software engineering, the research team, led by Drs. Sonya MacParland and Ian McGilvray, scientists at University Health Network’s (UHN) Transplant Program, Toronto General Hospital Research Institute and Dr. Gary Bader, Professor at the Donnelly Centre for Cellular and Biomolecular Research at the University of Toronto (U of T), mapped out the cellular landscape of 8,444 individual cells obtained from the tissues of healthy deceased donor human livers.

“For the past 20 years, we have studied the liver as a soup of cells as opposed to its individual components. This makes it difficult to target individual cells that are driving liver disease,” says Dr. MacParland, the lead author of the study and Assistant Professor in the Department of Immunology and the Department of Laboratory Medicine and Pathobiology, U of T.

By examining the gene expression profiles of each of these cells – about 1,500 active genes per cell – the research team found 20 distinct cell populations made up of hepatocytes, endothelial cells, cholangiocytes and various immune cells such as B cells, T cells and Natural Killer (NK) cells.

“These evaluations reveal new aspects of the immunobiology of the liver, such as the presence of two surprisingly distinct populations of liver resident macrophages (“big-eaters” of cellular debris) with inflammatory and non-inflammatory functions,” write the authors in their paper entitled, “Single Cell RNA Sequencing of human liver reveals distinct intrahepatic macrophage populations”, published today in Nature Communications, a peer-reviewed, on-line, open-access journal: http://www.nature.com/ncomms.

“We present a comprehensive view of the liver at single cell resolution that outlines new characteristics of resident cells in the liver, and in particular provides a new map of the human hepatic immune microenvironment,” note the authors.

The authors will also make their research available to the Human Cell Atlas Project, an international, open-access, collaborative effort to map all human cells to help scientists understand how genetic variation impacts disease risk and influences health. Because it is an open, free resource for any researchers in the world, it will accelerate discoveries which will in turn inform new treatments and drug development.

Dr. Ian McGilvray, Research Director, UHN Transplant Program and Associate Professor in the Department of Surgery at U of T, has performed hundreds of liver transplants and cancer surgeries. He wants to change how we treat liver disease. But in order to do that, he says that we need to first understand how the liver functions at the most fundamental level of the single cell.

The variation between cells is huge, he explains, but in 2018, it is surprising how little we know about the liver’s cellular landscape.

The impact of this is that in many cases of liver failure, our only option is transplantation, he says, noting that alternative treatments, reduction of transplant rejection rates and regenerative medicine solutions, can only be found if we understand how liver cells develop and work together within tissues and biological systems.

The urgency to find alternative approaches is spurred on by the increasing burden of liver disease, he says. Up to 23% of obese individuals are at risk of developing fatty liver with inflammation, for example, and more than 70 million people are chronically infected with hepatitis C.

In creating the liver map, the team had to overcome several challenges.

First, the project could only have been possible with a multidisciplinary team consisting of transplant surgeons, immunologists, hepatologists, computer scientists and genomics researchers from different institutions to develop the first-ever map of a solid organ.

Another major problem in studying the human liver is difficulty in accessing fresh tissue. Samples in the study were collected from deceased donor livers deemed acceptable for liver transplantation, with consent and ethics approvals. This makes it unique in the world, in contrast to the standard method of studying the liver from biopsy samples.

A third challenge is isolating single cells from liver tissue. Liver cells such as hepatocytes and others are delicate and often do not survive standard tissue extraction, which may involve chopping, separating and filtering of tissue into smaller parts. During this process, cells often die.

But with the experience gained in transplantation and painstaking trial and error work of many years, the researchers were able to develop the best protocols using enzyme mixtures to gently dislodge cells embedded in the spider web-like net of connective tissue of the liver, without actually harming the fragile cells themselves.

Only then could the team begin studying the molecular make-up of each cell individually. This step is absolutely essential in gaining a deeper understanding of how a small but critical change in a cell can precipitate a disease state within a complex mix of many other cells.

The latest technological advances helped the team to overcome the limitations of previous techniques such as genomics. Although it can analyze many cell types simultaneously “in bulk”, it cannot tease out the critical differences between cells or do so in combination with multiple other data.

Reaching out to their colleagues in the Princess Margaret Genomics Centre with their 10X Genomics Chromium system which excels at the analysis of complex tissues and heterogeneous collections of cells, and to Dr. Gary Bader at U of T’s Donnelly Centre, who developed the state-of-the art data analysis pipeline and custom pathway analysis software for the researchers, the team was then able to map out the genetic and molecular function of each cell and how each one contributes to overall liver function.

“We found some very cool things about the human liver that we did not expect,” says Dr. McGilvray. “Until this study, very little was known about what the liver macrophage – the ‘tank’ of the immune system that destroys foreign substances and co-ordinates the immune response – actually is. We found that there are two distinct populations of macrophages in the human liver, one which is pro-inflammatory and the other anti-inflammatory.”

This new understanding can help scientists to harness these two contrasting macrophages to, for example, achieve “tolerance” of a new donor organ, says Dr. McGilvray. For transplant recipients, he explains, in the future, clinicians may want to downregulate the pro-inflammatory cells and upregulate the anti-inflammatory cells so that the recipient does not reject the new organ, and even may not need to take as many or any immunosuppressive medications.

Dr. MacParland adds that the new liver map gives us a new understanding of many more populations of cells found in a normal liver. Eventually, she says, as the map becomes more and more detailed, we can compare these cells to those in a diseased liver.

Then, she says, we can answer the question: “How can we get the liver back to a normal state?”

Source:

https://www.uhn.ca/corporate/News/PressReleases/Pages/Revealing_the_molecular_mystery_of_human_liver_cells.aspx

Tagged with:

About author

Related Articles